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Abstract:Weprove and describe in great detail a generalmethod for constructing awide range ofmultivariate
probability density functions. We introduce probabilistic models for a large variety of clouds of multivariate
data points. In the present paper, the focus is on star-shaped distributions of an arbitrary dimension, where
in case of spherical distributions dependence is modeled by a non-Gaussian density generating function.

Keywords: convex data cloud, radially concave data cloud, star contoured data cloud, data cloud oriented
model, norm sphere, antinorm sphere, star sphere, global shape approximation, locally re�ned shape ap-
proximation, direction dependent model re�nement, star-shaped density, estimation, moments, simulation,
star generalized trigonometric functions, star generalized coordinates, multivariate p-generalized ellipsoidal
coordinates

MSC: 60E05, 62E17

1 Introduction
The components of a random vector following a spherical or even elliptically contoured distribution are only
independent if the density generating function is aGaussian one. In order to generalize the class of elliptically
contoured distributions, Fernandez et al. [4] introduced the star-shaped distributions. Inference problems in
linear models with star-shaped mixtures of Gaussian errors were considered by Jensen [5]. In the paper by
Kamiya et al. [6], star-shaped distributions are studied within the framework of orbital decomposition and
global cross-sections. Later Balkema et al. [2] examined the limit star shape of scaled sample clouds and
the related distributions. Yang and Kotz [23] describe an alternative approach by considering center similar
distributions. Recently, Kamiya [7] investigated the estimation of the shape of density level sets from star-
shaped distributions. In the last decade, star-shaped distributions have become popular because of their
�exibility in shape. Deviating from the shape of ellipses/ellipsoids, a wide range of shapes of the density
contours are possible among the star-shaped distributions.

In scatterplots of real datasets one can frequently see that the shapes of the contour lines/surfaces are not
ellipses/ellipsoids. This is a reason for looking for generalizations. Here star-shaped distributions come into
focus. The detailed theory of star-shaped distributions including stochastic and geometric representations is
developed by Richter in [16]. For understanding normalizing constants of density generating functions as ball
numbers (even in more general cases), we refer to [21]. Semiparametric and parametric estimation methods
for density generators, generalized radius distributions and the star-shaped densities are examined in the
paper [11]. The latter three papers contain references to a lot of other papers on star-shaped distributions
and ball numbers. The star-shaped distributions represent a rather general and �exible class of distributions
including convex as well as non-convex shapes of contours. Thus this class is appropriate for describing the
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underlying distribution of a large variety of datasets or data clouds. However, �exible parametric classes
involve a lot of parameters which in turn carries the risk of over�tting.

The main goal of this paper is to introduce useful speci�c model classes and to examine their use in
the statistical framework. In Section 2 of this paper, the continuous star-shaped distributions are introduced
and their basic properties are studied. Here we use rather general coordinates for establishing models for
the function de�ning the contour (level sets). We derive formulas for the �rst two moments. In establishing
proper model classes, identi�ability is a very important issue. If identi�ability is not given, we cannot expect
to get consistent estimators in the framework of statistical inference. In Section 2.3 we provide a su�cient
condition for the identi�ability. The de�nitions of model classes for the generating function are presented
in Section 3. In Section 4 we introduce a lot of models for the Minkowski functional which determines the
shape of the level sets of the density in the two-dimensional case. Section 5 provides such models in the
higher-dimensional case. Section 6 is dedicated to the simulation of random vectors with a speci�ed star-
shaped distribution. For establishing the simulation procedure we use a representation of the distribution
by a generalized radius and spherical coordinates given in Section 2. The maximum likelihood method for
the estimation of the parameters is brie�y discussed in Section 7. In Section 8 the reader �nds a discussion
on model checks. Real data examples and its �tted distributions are presented in Section 9. The proofs of the
statements can be found in Section 10.

2 Continuous star-shaped distributions

2.1 Introduction and general properties

We assume that K ⊂ Rd is a star body (a bounded set with the property x ∈ K ⇒ λx ∈ K for 0 ≤ λ ≤ 1) having
the origin in its interior. The Minkowski functional of K,

hK(x) = inf{λ > 0 : x ∈ λK},

is de�ned for every K under consideration andmayparticularly be any normor antinorm.Although, formath-
ematical reasons discussed for a particular case in [19], and more generally in [22], it is not trivial to further
assume that theMinkowski functional hK of K is positively homogeneous of degree one. This restrictionmade
here might be considered not to be too restrictive in many applied situations. A function f : Rd → [0,∞) is
called positively homogeneous of degree k if f (λx) = λk f (x) holds for x ∈ Rd , λ > 0. The set K(r) = rK and
its boundary S(r) = rS are called the star ball and star sphere of star radius r > 0, respectively. Notice that
S = {x : hK(x) = 1}. This star sphere S corresponds to the shape in [7]. Star balls may thus be convex or
radially concave subsets of the sample space, for example p-generalized ellipsoids with p ≥ 1 or 0 < p ≤ 1,
respectively.

Let a function g : [0,∞) → [0,∞) satisfy 0 < I(d, g) < ∞, where I(d, g) =
∞∫
0
rd−1g(r)dr. Such a function

is called a density generating function,

ϕg,K(x) = C(g, K)g(hK(x)), x ∈ Rd (1)

a star-shaped density of a random vector X = (X(1), . . . , X(d)). The star body K de�nes the contour. It is thus
adapted to the shape of the data cloud. The corresponding probability measure is denoted Φg,K and the nor-
malizing constant allows the representation

C(g, K) = 1
OS(S)I(d, g)

,

whereOS(S)means the star-generalized surface content of S, see [16]. If the additional assumption C(g, K) = 1
is satis�ed then g is called a density generator. A random vector U following the distribution

ωS(A) = OS(A)
OS(S)

, A ∈ Bd ∩ S
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is said to be star-uniformly distributed. The geometric measure representation of a star-shaped distribution
law reads

Φg,K(B) = 1
I(d, g)

∞∫
0

rd−1g(r)FS(B, r)dr, B ∈ Bd .

HereBd is the σ-algebra of Borel sets of Rd, and

FS(B, r) =
OS([ 1

r B] ∩ S)
OS(S)

= ωS([ 1
r B] ∩ S)

is the star sphere intersection proportion function of the set B. The random variable R = hK(X) is called the
star radius of the observation vector X. This random vector X satis�es the stochastic representation

X d= R · U (2)

with R and U being independent (symbol d= means that the random variables on both sides have the same
distribution law). Let, moreover, ‖.‖ denote any norm or antinorm in Rd and B = {x ∈ Rd : ‖x‖ ≤ 1} and its
boundary SB the corresponding unit ball and sphere, respectively. Because of the homogeneity property of
hK, ϕg,K allows the representation

ϕg,K(x) = C(g, K)g(‖x‖hK( x
‖x‖ )), x ∈ Rd , (3)

where the point x
‖x‖ belongs to the normor antinormunit sphere SB. Onemay imagine that there is a �rst idea

for describing a shape in the data cloud by the level sets of the functional ‖.‖ and afterwards there appears the
wish to correct or modify this functional by a suitable direction dependent or locally acting factor hK(x/‖x‖).
For a moment, let us consider the case of the Euclidean norm ‖.‖ = ‖.‖2 . In this case, Yang and Kotz [23]
studied the class of distributions with density (3), where our function hK corresponds to b−1 in their paper (b
is the so-called bound function), and our function g corresponds to function G. Here G is the antiderivative of
r −g(r) · r−d, where G(∞) = 0 and g is de�ned as in Lemma 2.3 of Yang and Kotz’s paper. Yang and Kotz call
this class center-similar distributions and emphasize thatX/ ‖X‖2 does not follow a uniform but an arbitrary
distribution.

In the next step we incorporate location and scale in the formula for the density. To ensure identi�ability,
we assume in the following that

I(d, g) =
∞∫

0

rd−1g(r)dr = 1. (4)

Then κ−1 = OS(S)−1 is the normalizing constant of the density. A tractable formula for κ is given below.
We consider a random vector X having the density φg,hK ,µ,Σ

ϕg,h,µ,Σ(x) =
(
κ det(Σ)

)−1 g
(
hK(Σ−1(x − µ)

)
) for x ∈ Rd . (5)

This distribution of X is referred to as a continuous star-shaped distribution. In this formula function
h = hK determines the contour of the density. µ ∈ Rd is the location parameter. The diagonal matrix
Σ = diag(σ1, . . . , σd) with σi > 0 for i = 1, . . . , d consists of scale parameters of the distribution. κ is a
suitable constant.

In view of (2), X also allows the representation

X d= µ + R · ΣU . (6)

For any b ∈ Rd and any diagonal matrix A ∈ Rd×d with positive diagonal entries, it can be easily shown that
AX + b has the density ϕg,h,Aµ+b,ΣA. The density ϕg,h,0,I is called standard star-shaped.

Next we develop a representation of hK using general coordinates r, ψ1, . . . , ψd−1, where r ∈ [0,∞),
(ψ1, . . . , ψd−1) ∈ Ad ⊂ Rd−1. Later models for h will be based on this representation. Let ‖.‖ be a given
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norm or antinorm. Further let a transformation from certain d-dimensional coordinates r, ψ1, . . . , ψd−1 to
the Cartesian ones xj be de�ned by functions I1, . . . , Id : Ad → R as

xj = rIj(ψ1, . . . , ψd−1) (7)

for j = 1, . . . , d, where r = ‖x‖. Assume that there is a bijective mapping T : [0,∞) × Ad → M,M ∈ Bd,
such that (r, ψ1, . . . , ψd−1)  (rI1(ψ1, . . . , ψd−1), . . . , rId−1(ψ1, . . . , ψd−1))T and Rd\M has measure zero.
De�ne T̃ : M → Ad such that x  T−1(‖x‖−1 x) and T−1 is the inverse mapping to T. Hence T̃(x) = ψ =
(ψ1, . . . , ψd−1)T . We introduce the Jacobian of I1 . . . Id by J. The Jacobian determinant of the transformation
is given by

∆(r, ψ1, . . . , ψd−1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I1
I2
...
Id


rJ



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= rd−1∆̄(ψ1, . . . , ψd−1) (8)

such that dx = ∆(r, ψ1, . . . , ψd−1)drdψ1 . . .dψd−1, ∆̄ = ∆r1−d. Now we provide two important examples of
coordinates.

Example 1: Spherical coordinates (r, α1, . . . , αd−1): r = ‖x‖2 ,

Ij(α1, . . . , αd−1) = cos αj
j−1∏
k=1

sin αk

for j = 1, . . . , d, where αd = 0, α = (α1, . . . , αd−1) ∈ (0, π)d−2 × [0, 2π) =: Ad , r ≥ 0,M := {x ∈ Rd :
(xd−1, xd) = ̸ (0, 0)}. If the upper limit of the product is smaller than the lower one, then we de�ne the product
to be 1. Then themapping T̃ assigns to vector x the corresponding spherical angles α1, . . . , αd−1 from Ad. The
following Jacobian determinant is well-known:

∆(r, α1, . . . , αd−1) = rd−1
d−2∏
k=1

sind−k−1 αk .

Example 2: spherical lp-coordinates (r, α1, . . . , αd−1) for p ∈ (0,∞): These coordinates are introduced in
[13]. De�ne Np(β) =

(
| sin β|p + | cos β|p

)1/p, and

sinp(β) = sin β
Np(β)

, cosp(β) = cos β
Np(β)

.

The transformation from these coordinates r, α1, . . . , αd−1 to the Cartesian ones xj is given by (7) and

r = ‖x‖p =

( d∑
i=1

|xi|p
)1/p

, Ij(α1, . . . , αd−1) = cosp(αj)
j−1∏
k=1

sinp(αk)

for j = 1 . . . d, where αd = 0, α = (α1, . . . , αd−1) ∈ (0, π)d−2 × [0, 2π) =: Ad , r ≥ 0. According to Theorem 2 of
[13], we can provide the formula for the Jacobian determinant:

∆(r, α1, . . . , αd−1) = rd−1
d−2∏
k=1

sind−k−1 αkNp(αk)k−d−1. �

The interested reader �nds evenmore general coordinates in papers from the references at the end of this
note.

In many particular cases of these coordinates (including Examples 1 and 2), ψ1, . . . , ψd−1 play the role
of generalized spherical angles. We introduce a function H : Ad → [0,∞) such that

H(ψ) = hK(T((1, ψ))) (9)
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for ψ ∈ Ad. Function hK can then be written as

hK(x) = ‖x‖H(T̃(x)) = rH(ψ) (10)

for x ∈ M, and corresponding r > 0, ψ ∈ Ad. The idea behind this approach is to separate the dependence of
the density on r and the ψ-coordinates. Here hK can be written as a product of r and a function H of ψ, and
H(T̃(.)) is a positively homogeneous function of degree zero.

The following lemma deals with the computation of probabilities and the constant κ:

Lemma 2.1. Let X be a random vector distributed as a continuous star-shaped distribution with the density
function (5). We introduce Ā = {x = T(r, ψ) : ψ = (ψ1, . . . , ψd−1)T ∈ [ψ1, ψ̄1] × . . . × [ψd−1, ψ̄d−1], r ∈
[r/H(ψ), r̄/H(ψ)]}, and ΣĀ = {Σx : x ∈ Ā}. Then

P
{
X ∈ µ + ΣĀ

}
= κ−1

ψ̄d−1∫
ψ
d−1

. . .
ψ̄1∫
ψ

1

H(ψ)−d ∆̄(ψ) dψ
r̄∫
r

g(r)rd−1 dr.

Moreover
κ =

∫
Ad

H(ψ)−d ∆̄(ψ) dψ.

In this lemma, the sets Ā are slices of Rd with rectangular range of the coordinates ψi, the radius depending
on the ψ-coordinates in a special way. Now we have the following statement on the �rst two moments (V is
the symbol for the variance):

Lemma 2.2. Let X be a random vector distributed as a continuous star-shaped distribution with the density
function (5). Assume that Gd+1 < +∞, where Gj =

∫∞
0 g(q)qjdq. Then

E(X) = µ + Σµ̃, µ̃j = κ−1Gd
∫
Ad

Ij(ψ)∆̄(ψ) H(ψ)−d−1 dψ,

V(X(j)) = σ2
j

κ−1Gd+1

∫
Ad

I2j (ψ)∆̄(ψ) H(ψ)−d−2 dψ − µ̃2
j


for j = 1 . . . d.

2.2 Random radius and ψ-coordinates

Remember that the star-generalized radius can be computed by R = hK(Σ−1(X − µ)). De�ne Ψ = T̃(Σ−1(X −
µ)) ∈ Ad. Vector Ψ consists of the ψ-coordinates (angles in the spherical coordinates case) representation of
Σ−1(X − µ). Lemma 2.3 gives the joint distribution of R and Ψ .

Lemma 2.3. The random variables R and Ψ are independent with densities

f (r) = g(r)rd−1, (11)

ϕΨ (ψ) = κ−1H(ψ)−d ∆̄(ψ). (12)

This lemma shows that the distribution of X can be represented by two independent components. Moreover,
the generating function g is directly related to the density of R.

In the following we discuss the identi�ability of star-shaped distribution classes.
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2.3 Identi�ability

Identi�ability of model classes for distributions ensures that two di�erent sets of parameters lead to di�er-
ent probability measures of the random vector X. We pose assumptions which turn out to be crucial for the
veri�cation of identi�ability.

Assumption Ag: G is the set of right continuous functions g : [0,∞) → [0, +∞) satisfying (4) and the
following two conditions:
(i) For g1, g2 ∈ G, g1 ̸≡ g2, there is no γ > 0 such that

g2(z) = γdg1(γz) for z > 0.

(ii) There are z1, z2 > 0, z1 = ̸ z2 such that g(z1), g(z2), g(0) are di�erent values.�
AssumptionAh: LetH be a set of positively homogeneous functionsRd → [0, +∞) being symmetricwith

respect to the origin such that for two di�erent functions h1, h2 ∈ H, there is no diagonal matrix Σ̄ satisfying
h1(x) = h2(Σ̄x) for every x ∈ Rd.�

Roughly speaking, it is excluded in Assumptions Ag and Ah that scale transformations of g ∈ G lead to
another element of G, and scale transformations of h ∈ H lead to another element of H. The special form
of scale condition (i) is reasoned by the fact that g1, g2 have to ful�l (4). The next Theorem 2.4 provides the
identi�ability result.

Theorem 2.4. Assume that AssumptionsAg andAh are satis�ed. Then the model class {φg,h,µ,Σ : g ∈ G, h ∈
H, µ ∈ Rd , σ ∈ (0,∞)d} is identi�able.

Now the task is to check carefully the conditions of Theorem 2.4 in the case of speci�c model classes.

3 Modelling the density generating function
Certain aspects of dependence modeling on using p-generalized non-Gaussian density generating functions
for jointly ln,p-symmetrically distributed random variables are studied in [12]. We consider here a model fam-
ily {gθ : θ ∈ Θ1} of generating functions satisfyingAg. Θ1 ⊂ Rq1 is the corresponding parameter space. The
model leads to a density with �nite local maximum at zero if

lim
r→0+0

g(r) < +∞ and either lim
r→0+0

g′(r) < 0 or lim
r→0+0

g′(r) = 0 ∧ lim
r→0+0

g′′(r) < 0. (13)

For many applications, it is bene�cial to have this property. Let us introduce three models for gθ.
(1) Kotz-type distribution: parameter θ = (s, t) ∈ Θ1 = (−d, +∞) × (0, +∞),

g(s,t)(r) = t
Γ( s+dt )

rse−r
t
for r > 0.

Condition (13) is ful�lled for s = 0. The generalized radius R has a generalized Gamma distribution. In the
case s = 1 − d, R has a Weibull distribution.

(2) modified exponential model. θ = (a, b) ∈ Θ1 = {(a, b) : b > 0, a > −2
√
b)},

g(a,b)(r) = 1 + ar + br2

(d − 1)! + a d! + b(d + 1)!
e−r for r > 0.

Condition (13) is satis�ed provided that (a = 1 ∧ b ≤ 1
2 ) ∨ (a < 1). The distribution of R is a mixture of Erlang

distributions.
(3) modified Pearson VII model: parameter θ = (s,m) ∈ Θ1 = {(s,m) : s > −d,m > (s + d)/2},

g(s,m)(r) = 2Γ(m)rs

Γ((s + d)/2)Γ(m − (s + d)/2)
(

1 + r2
)m for r > 0.
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Condition (13) is ful�lled for s = 0. In the case s = 1 − d, R has a scale-transformed one-sided student-t-
distribution.�

These model classes ful�l Assumption Ag. Notice that a scaling parameter cannot be incorporated for
the reason explained in the previous section.

4 Modelling function H in the two-dimensional case

4.1 Using Euclidean norm

Let d = 2 and φ(x, y) ∈ [0, 2π) be the angle in radians between the positive x-axis and the line from the
point (x, y) to the origin: φ(x, y) = arctan(y/x) for x > 0, y ≥ 0, φ(x, y) = arctan(y/x) + π for x < 0, φ(x, y) =
arctan(y/x) + 2π for x > 0 and y < 0, φ(0, y) = π

2 · (2 − sgn(y)) for y ≠ 0. In the following we propose model
classes {Hη : η ∈ Θ2} for the function H introduced in (9). Here Θ2 ⊂ Rq2 is the parameter space of H. In
view of (10), we have

hη(x) = ‖x‖2 Hη(T̃(x)) = ‖x‖2 Hη(φ(x1, x2)), (14)

for x = (x1, x2)T ∈ R2\(0, 0)T and
hη((cosφ, sinφ)T) = Hη(φ)

for η ∈ Θ2, φ ∈ [0, 2π). Here Hη(φ(.)) is positively homogeneous of degree zero. This leads to the density

ϕg,h,µ,Σ(x) =
(
κ det(Σ)

)−1 g
(∥∥∥Σ−1(x − µ)

∥∥∥
2
Hη(φ(Σ−1(x − µ)

)
)) for x ∈ Rd .

We state the important principle for Section 4:
Construction principle:Assume that for empirical or theoretical reasons it seems that, globally viewed,

the sample cloud re�ects the shape of the sphere SB or some shape being close to it. Choose then a direction
dependent or locally acting function φ Hη(φ) for modelling deviations from this shape and with Hη(φ(x))
being homogeneous of degree zero, such that the complete shape is best in some sense approximated by the
level sets of the function (14).

The following model classes are introduced according to this principle. Now we introduce two model
classes for Hη satisfying the following AssumptionH2:

AssumptionH2: Hη : [0, 2π)→ (0,∞) is a bounded, continuously di�erentiable function,

lim
t→2π−0

Hη(t) = Hη(0), Hη(π + φ) = Hη(φ) for φ ∈ [0, π),

inf
φ∈[0,2π)

Hη(φ) > 0. �

Here the constant κ can be evaluated by using the formula

κ = 2
π∫

0

Hη(φ)−2dφ.

A rather simple class of model functions Hη is given by
Model class 1:

Hη(φ) =
(

1 + a sin2 (φ − β)
1 + b sin2 (φ − β)

)c
for φ ∈ [0, 2π),

where η = (a, b, c, β)T , a ∈ (−1,∞), b ∈ (−1,∞), a = ̸ b, β ∈ [0, π) are the parameters of this function.�
Changing the parameter β induces a rotation of the contour curves. Changing a, b, c leads to another

shape of the contour lines. In the case c = 1, we have

κ =
a3 + b2

(
−2 − 3a + 2(a + 1)3/2

)
+ 2a2(b + 1)

a2(a + 1)3/2 π.
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Model class 1 includes elliptical contours for c = 1
2 , a = A2B−2 − 1, b = 0, where A, B are the lengths of

the semi axes of the ellipse. In this case the resulting density ϕ is an elliptically contoured one. The resulting
function h of model class 1 is given by

hη(x) =
√
x2

1 + x2
2

(
x2

1
(

1 + (a + 1) tan2 β
)
− 2ax1x2 tan β + x2

2
(

tan2 β + a + 1
)

x2
1
(

1 + (b + 1) tan2 β
)
− 2bx1x2 tan β + x2

2
(

tan2 β + b + 1
))c (15)

To illustrate the shape of the star-shaped density, we depict contour curves (level sets) of the density
which are curves {(r, φ) : r = C0H(φ)−1, φ ∈ [0, 2π)} in polar coordinates with certain values of C0 > 0.
Figures 1 and 2 show the variety of shapes of contours within model class 1. In the �gures the curves are
coloured in blue, orange and green in this order. In Figure 2 left the contour of the density is depicted in a
special case to give an impression of the resulting contours.

Figure 1: model class 1. contour curves of the density and H as a function of φ in the cases a = 1, b = 2, 0.5, 0.05, c = 1, β = 0

Figure 2: model class 1. left: several level sets of the density in the case a = 1, b = 2, c = 1, β = 0. right: contour curves of the
density in the cases a = 1, b = 2, c = 1, 2, 3, β = 0

A further possibility is to de�ne function Hη as a polynomial of sin2(φ − β). This is done in the next
de�nition.

Model class 2:

Hη(φ) =
(

1 + a sin2 (φ − β) + b sin4 (φ − β)
)c

for φ ∈ [0, 2π),



Modelling with star-shaped distributions | 53

η = (a, b, c, β)T . The parameters a, b, c ∈ R, b ≠ 0, β ∈ [0, π) ful�l the condition:
infx∈[0,1]

(
1 + ax + bx2) > 0 which is equivalent to (−1 − a < b) ∧ (( a2b ≥ 0) ∨ ( a2b ≤ −1) ∨ (1 − a2

4b > 0)).
�

Figure 3 show the contour curves of the model class 2 in order to illustrate the variety of shapes in this
class.

Figure 3:model class 2. left: contour curves of the density in the cases a = −2, b = 1.5, 2, 3, c = 1, β = 0. right: contour curves
in the cases a = −0.7, b = 1, 2, 3, c = 2, β = 0

From the de�nition formulas, a statement on the identi�ability can be derived immediately.

Proposition 4.1. With the restriction c = ̸ 12 ∨ (c = 1
2 ∧ β = ̸ 0), Model class 1 ful�ls AssumptionAh. Model class

2 satis�es AssumptionAh.

4.2 Using a general norm

For further dealingwith representation (1)we shallmakeuse of suitable coordinates, especially for describing
B and SB. It turns out that easiest use of suitable coordinates is in dimension two, see [17]. Let, according to
[14] and [18], the ‖.‖-norm or antinorm or star-generalized polar coordinate transformation PolSB

: [0,∞) ×
[0, 2π)→ R2 be de�ned by x1 = r cosSB

(φ), x2 = r sinSB
(φ) for r ∈ [0,∞), φ ∈ [0, 2π):

cosSB
(φ) = cos(φ)

‖(cosφ, sinφ)T)‖
, sinSB

(φ) = sin(φ)
‖(cosφ, sinφ)T)‖

. (16)

The inverse of this transformation is de�ned by

r = r(x1, x2) = ‖(x1, x2)T‖ and φ = φ(x1, x2) = φ((x1, x2)T). (17)

Here φ(., .) is de�ned as in Section 4.1. Because of the relation Pol−1
SB

( x
‖x‖ ) = (1, φ(x)) and the de�nition

Hη(φ) = hK(PolSB
(1, φ)), the following general representation formula for star-shaped densities is proved.

For arbitrary norm or antinorm ‖.‖, the star-shaped density allows the representation

ϕg,h,0,I(x) = κ−1 g
(
‖x‖Hη(φ(x

)
)), x ∈ R2,

where the function x H(φ(x)) is homogeneous of degree zero. We recall that the argument of function g is
assumed to be positively homogeneous of degree one.

Let us consider the following model class for H.
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Model class 3: Function H is given by

Hη(φ) = (| cosφ|p + | sinφ|p)1/p =

∥∥∥∥∥
(

cosφ
sinφ

)∥∥∥∥∥
p

, φ ∈ [0, 2π), (18)

where η = p > 0 and ‖x‖p denotes the l2,p-norm or antinorm of x if respectively p ≥ 1 or 0 < p < 1.�
Using function Hη in (18), it may be checked immediately that the function

Hη(φ(x)) = ‖x‖p‖x‖2
, x ∈ R2 (19)

is positively homogeneous of degree zero. If the shape of the sample cloud deviates from the contour or the
level sets of the functional ‖.‖ in a similar manner as the contour or level sets of the norm ‖.‖p deviates from
that of the functional ‖.‖2, then the (standard) probability density function

ϕg,h,0,I(x) = κ−1g(‖x‖ ‖x‖p‖x‖2
), x ∈ R2 (20)

could be suitable to (globally and locally) model the data. This is what one might call data cloud oriented
modelling. In the present case, the shape de�ning star body K has Minkowski functional

hK(x) = ‖x‖ ‖x‖p‖x‖2
, x ∈ R2. (21)

In the particular case that ‖.‖ = ‖.‖2, this means

ϕg,h,0,I(x) = κ−1g(‖x‖p), x ∈ R2. (22)

In other words, in dependence of the direction determined by angle φ, function Hη in (18) describes the
deviation of the l2,p-unit sphere (that is the l2,p-unit circle) from the Euclidean unit sphere.

Itmay seemnot to be trivial to explicitly describe the star uniformdistribution on S in thisway, in general.
Nevertheless, modelling data clouds by primary (or global) approximation with norm ‖.‖ and secondary (or
directionally correcting or local) approximation with function Hη may be successful. Clearly, if one just starts
from an ansatz like (21) then, vice versa, one can derive the coordinate representation of Hη in (18) for the
purposes of statistical analysis, see Sections 7 and 9.

The following Figure 4 shows the level sets of the function x  Hη(φ(x)) and the Minkowski functional
hK for di�erent values of p and norms ‖.‖, respectively.

Figure 4: model class 3. left: contour curves of h for value 1 and p ∈ { 1
3 ,

1
2 , 1, 2}, right: p ∈ {2, 3, 4, 5}.

If we are given Hη of model class 1 with β = 0, a ≠ b, then it follows immediately that Hη(φ(x)) allows
the representation (see (15))

Hη(φ(x)) =
‖x‖2

(1,1/
√
a+1)

‖x‖2
(1,1/

√
b+1)

(23)
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with ‖x‖(u,v) denoting the norm ‖x‖(u,v) = (( x1
u )2 + ( x2

v )2)1/2. The function Hη(φ(x)) is homogeneous of degree
zero. For several values of A and B, and di�erent norms ‖.‖, Figure 5 shows the level sets of the function hK
with

hK(x) = ‖x‖ x
2
1 + Ax2

2
x2

1 + Bx2
2
, x ∈ R2. (24)

Figure 5:model class 1, hK according to (24). left: contour curves of h for p = 1
2 , A, B = 0, right: for p = 4, A, B = 0, bottom: for

p = 4, A = 1, B = 4

Similarly, one can apply model class 2 of Section 4.1 in this context.
The following class is of particular interest because it combines global and local approximation of data

clouds in a very speci�c way and can be generalized and modi�ed in various directions.
Model class 4: Let a ∈ (0, 1) and p > 0 be real numbers (η = (a, p)T) and

Hη(φ) = 1 + a sinp(φ), φ ∈ [0, 2π),

where the p-generalized sine function sinp de�ned in Example 2 of Section 2.1 is just sinSB
in (16) for the case

‖.‖ = ‖.‖p.�
Then

Hη(φ(x)) = 1 + a x2
‖x‖p

is positive homogeneous of degree zero and

ϕg,h,0,I(x) = κ−1g(‖x‖ (1 + a x2
‖x‖p

).

The following Figure 6 illustrates the shape of density level sets for model class 4.
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Figure 6: model class 4. left: contour curves of h for value 1 and p = 2, a = 0.1, 0.3, 0.6, right: the same for p = 6

As explained above, an additional parameter β causes a rotation of the contour of hK if φ is replaced by
φ − β in the formulas for Hη. We do not discuss this aspect here in more detail. The next section is devoted to
higher-dimensional models.

5 Modelling function H in higher-dimensional cases

5.1 Using Euclidean norm

In this section, we use the d-dimensional spherical angles α1, . . . , αd−2 ∈ (0, π), αd−1 ∈ [0, 2π) according to
Example 1 in Section 2.1, combined as vector α ∈ Ad = (0, π)d−2 × [0, 2π). It is reasonable to pose a symmetry
assumption hK(−x) = hK(x) for all x ∈ Rd which is equivalent to

Hη((π − α1, . . . , π − αd−2, ±π + αd−1)T) = Hη(α) (25)

for α ∈ Ad, where ±π = π for αd−1 ≤ π, ±π = −π otherwise. Then Hη is homogeneous of degree zero. We con-
sider model functions Hη : Ad → (0,∞) with parameters η ∈ Θ2 ⊂ Rq2 , and pose the following assumption
on H = Hη:

AssumptionHd: H : Ad → (0,∞) is continuously di�erentiable, bounded,

lim
t→2π−0

Hη(α1, . . . , αd−2, t) = Hη(α1, . . . , αd−2, 0), (26)

lim
αj→0+0

Hη(α) = H̃j(α1, . . . , αj−1), (27)

lim
αj→π−0

Hη(α) = H̆j(α1, . . . , αj−1) (28)

for j = 1, . . . , d − 2 with constants H̃1, H̆1 > 0 and appropriate bounded functions H̃j , H̆j : (0, π)j−1 → (0,∞)
(j ≥ 2), (25) holds and

inf
α∈[0,2π)

Hη(α) > 0. �

Identities (26)-(28) describe the continuity of H at boundaries of Ad. For any j ∈ {1, . . . , d − 2}, r >
0, α1, . . . , αj−1 ∈ (0, π), the points {(r, α1, . . . , αj−1, 0, αj+1, . . . , αd−1) : αj+1, . . . , αd−2 ∈ (0, π), αd−1 ∈
[0, 2π)} in spherical coordinates coincidewith onepoint (x1, . . . , xj , 0, . . . , 0) in Cartesian coordinateswhere
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xj > 0. This leads to assumption (27). For any j ∈ {1, . . . , d − 2}, r > 0, α1, . . . , αj−1 ∈ (0, π), the points
{(r, α1, . . . , αj−1, π, αj+1, . . . , αd−1) : αj+1, . . . , αd−2 ∈ (0, π), αd−1 ∈ [0, 2π)} in spherical coordinates coin-
cide with one point (x1, . . . , xj , 0, . . . , 0) in Cartesian coordinates where xj < 0. Thus condition (28) should
be required. Moreover, for any r > 0, α1, . . . , αd−2 ∈ (0, π), the points {(r, α1, . . . , αd−1) : αd−1 ∈ {0, 2π}} in
spherical coordinates coincide with one point (x1, . . . , xd−1, 0) in Cartesian coordinates. Therefore (26) is a
reasonable requirement.

Let Qη be an orthogonal matrix describing the rotation of the density in terms of η. Then the formula for
the contour de�ning function is as follows:

hK(x) = ‖x‖2 Hη(T̃(Qηx)).

By means of Qη, we rotate the contour determined by the prototype model Hη. It has to be ensured that a
rotation of one element Hη1 does not lead to another element Hη2 (η2 ≠ η1) of the model class. To simplify
the representation, we do not consider an additional rotation in the following. Incorporating this rotation is
left to the reader. Next we introduce the model

Model class 5:

Hη(α) =

1 +
d−1∑
j=1

aj
j∏
k=1

sin2 αk

−1

,

η = (a1, . . . , ad−1)T . a1, . . . , ad−1 are the parameters of this function, where not all aj are equal to zero, and
1 +
∑m

j=1 aj > 0 for all m = 1, . . . , d − 1.�
Obviously, (26) and (25) are ful�lled for model class 5 and Hη is bounded away from zero. Lemma 10.1 in

Section 10 shows that model class 5 satis�es the remaining conditions of AssumptionHd. Now we can state
an interesting rotational property.

Rotational properties of model class 5: H and therefore the density is invariant w.r.t. rotations about
the x1-axis if aj = 0 for j ≤ d −2. H is invariant w.r.t. rotations about the xd-axis if aj = 0 for j ≥ 2. Speci�cally,
for d = 3, x1 and xd correspond to z and y in the common notations.

Let us denote the (marginal) densities of Ψk1 , . . . , Ψkm by ϕk1 ,...,km . For model class 4 we derive the fol-
lowing lemma on marginal densities of Ψ:

Lemma 5.1. For model class 5 and di�erent numbers k1, . . . , km ∈ {1, . . . , d − 1}, we have

ϕk1 ,...,km (αk1 , . . . , αkm ) = κ−1 ∑
n1+...+nd=d

d!
n1! . . . nd!

d−1∏
j=1

anjj
∏

1≤k≤d−1,k∈ ̸{k1 ,...,km}

νkS(n̄k)
∏

k∈{k1 ,...,km}

sinn̄k αk ,

where n̄k = 2(nk + . . . + nd−1) + d − k − 1, νk = 1 for k < d − 1, νk = 2 for k = d − 1, αk ∈ (0, νkπ),

S(m) =
√
π
Γ
(m+1

2
)

Γ
(m+2

2
) .

In particular, the one-dimensional marginal densities can be evaluated by

ϕl(ᾱ) = κ−1 ∑
n1+...+nd=d

d!
n1! . . . nd!

d−1∏
j=l

anjj
∏

1≤k≤d−1,k= ̸l

νkS(n̄k) sinn̄l ᾱ, ᾱ ∈ (0, νlπ).

With this lemma, easy-to-handle formulas for the marginal densities of Ψ of every dimension are provided. S
gives integrals of powers of the sine function. As a byproduct of the proof of the previous lemma, we obtain
a formula for κ.

Lemma 5.2. For model functions H of class 5, the following identity holds:

κ =
∑

n1+...+nd=d

d!
n1! . . . nd!

d−1∏
j=1

anjj
d−1∏
k=1

νkS(n̄k),

S, n̄k and νk as in the previous lemma.
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Figure 7 illustrates the shape of level sets of densities of model class 5.

Figure 7: model class 5. left, right: contour surface of the density and function H (α1 = θ, α2 = φ) in the case a = 2, b = 1.
bottom: contour surface in the case a = −1, b = 0.2

Class 5 can be generalized as follows:
Model class 6:

Hη(α) =

1 + ad−1(1 − H̄η̄(αd−1)−1)
d−2∏
k=1

sin2 αk +
d−2∑
j=1

aj
j∏
k=1

sin2 αk

−1

.

Let c := min(0, infφ∈[0,2π) ad−1(1 − H̄η̄(φ)−1)). In this model a1, . . . , ad−1 are the parameters of function Hη,
where not all aj are equal to zero, and 1 + c +

∑m
j=1 aj > 0 for all m = 1 . . . d − 2. H̄η̄ is a function from model

class 1 or 2.�
If α1, . . . , αd−2 = π

2 and a1, . . . , ad−2 = 0, ad−1 = −1 then Hη(α) = H̄η̄(αd−1). Model class 6 can be treated
in a similar way as class 5.

5.2 Using other norms

Let ‖x‖ be any norm or antinorm of Rd. In this section the general model for function h is given by

hη(x) = ‖x‖Hη(T̃(Qηx)),

where Qη is an orthogonal matrix describing a rotation. As above we omit this rotation in the following to
simplify the presentation.

From a technical point of view, the situation in higher dimensional cases still di�ers essentially from
that in dimension two because the properties of the simple transformation (17) are not being dominant in the
multivariate case. More advanced coordinate systems and techniques might be useful to construct functions
Hη being positively homogeneous of degree zero.
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However, on using the common multivariate polar or spherical coordinate transformation and its well
known inverse, we can introduce another model class.

Model class 7: For η = p > 0,

Hη(φ) = (| cosφ1|p + | sinφ1 cosφ2|p + ... + | sinφ1... sinφd−2 cosφd−1|
p (29)

+| sinφ1... sinφd−2 sinφd−1|
p)1/p . �

Figure 8 shows two contour surfaces of densities in Model class 7.

Figure 8:model class 7. left: contour surface of the density in the case p = 4. right: contour surface in the case p = 0.6

In case that B = {x ∈ Rd : ‖x‖2 ≤ 1}, Model class 3 may directly be generalized to the multivariate case,
meaning that equations (19) up to (22) are valid also for x ∈ Rd with the norms correspondingly de�ned there.

Now we intend to generalize function H from (29) using ellipsoidal coordinates on the basis of E(a,b)-
generalized trigonometric functions being de�ned in [15] for positive values of a, b as

cos(a,b)(φ) = (cosφ)/a
Na,b(φ)

and sin(a,b)(φ) = (sinφ)/b
Na,b(φ)

, φ ∈ [0, 2π),

where Na,b(φ) = (((cosφ)/a)2 + ((sinφ)/b)2)1/2. Let the ellipsoidal coordinate transformation

TEa : Md → Rd with Md = [0,∞) × Ad , Ad = (0, π)(d−2) × [0, 2π),

where a = (a1, ..., ad)T consists of positive real numbers, be de�ned as in [15]. The map TE(a,b) is almost
one-to-one, and with

x*i = xi
ai

and r*j = (
d∑
i=j
x*2i )1/2,

its inverse is given a.e. by

r =

( d∑
i=1

x*2i

)1/2

, αj = arccos(aj ,aj+1)

(
x*j
r*j

)
, j = 1, ..., d − 2,

and, if xd−1 = ̸ 0,

arctan
∣∣∣∣ xdxd−1

∣∣∣∣ = αd−1 if (xd−1, xd) ∈ Q1, = π − αd−1 in Q2,



60 | Eckhard Liebscher and Wolf-Dieter Richter

arctan
∣∣∣∣ xdxd−1

∣∣∣∣ = −π + αd−1 if (xd−1, xd) ∈ Q3, = 2π − αd−1 in Q4.

Here, arccos(aj ,aj+1) denotes the function inverse to cos(aj ,aj+1) and Q1 up to Q4 denote anti-clockwise enumer-
ated quadrants from R2.

Let B = {x ∈ Rd : ‖x‖a,2 ≤ 1} and, for arbitrary p > 0, the following model class can be de�ned:
Model class 8: For η = (p, a1, . . . , ad)T , p, aj > 0,

Hη(α) = (| cos(a1 ,a2)(α1)|p + | sin(a1 ,a2)(α1) cos(a2 ,a3)(α2)|p + ...

+| sin(a1 ,a2)(α1)... sin(ad−2 ,ad−1)(αd−2) cos(ad−1 ,ad)(αd−1)|p

+| sin(a1 ,a2)(α1)... sin(ad−2 ,ad−1)(αd−2) sin(ad−1 ,ad)(αd−1)|p)1/p . �

With the abbreviations x*j = xj
aj and r

*
j = (x*2j + ... + x*2d )1/2, for j = 1, ..., d, and r*1 = ‖x‖a,2, for j =

1, ..., d − 2, the following equations are valid:

cos(aj ,aj+1)(αj) =
x*j
r*j

and sin(aj ,aj+1)(αj) =
r*j+1

r*j
.

Moreover,

cos(ad−1 ,ad)(αj) =
|x*d−1|

(x*2d−1 + x*2d )1/2 , sin(ad−1 ,ad)(αj) =
|x*d|

(x*2d−1 + x*2d )1/2

and
Nad−1 ,ad (arctan

∣∣∣∣ xdxd−1

∣∣∣∣) =
|(xd−1, xd)|(ad−1 ,ad)
|(xd−1, xd)|2

.

It follows that, further generalizing equation (19), there holds

Hη(T̃(x)) = ‖x‖a,p‖x‖a,2

proving that Hη(T̃(.)) is positive homogeneous of degree zero. Because of the relations

TE−1
a,p ( x
‖x‖ ) = (1, T̃(x)) and Hη(α) = hK(PolSB

(1, α)),

we have �nally that
ϕg,h,0,I(x) = C(g, K)g(‖x‖a,p), x ∈ Rd .

For the stochastic representation of a vector X following this distribution, see Section 1. A principal compo-
nent representation of ϕg,h,0,I has been dealt with in [20].

6 Simulation
Simulations of the distribution can be based on Lemma 2.3. Let X̃ = Σ−1(X − µ), and Ψ = T̃(Σ−1(X − µ)) be
de�ned as in Section 2.2. Remember that R = h(X̃). By (9), we have

R = ‖X̃‖2h(T(1, Ψ)) = ‖X̃‖2H(Ψ).

This implies

X̃ = T(‖X̃‖2, Ψ)

= ‖X̃‖2H(Ψ)T(H−1(Ψ), Ψ)

= R T(H−1(Ψ), Ψ).

In view of (6), we have U d= T(H(Ψ)−1, Ψ). Random vector U has the properties described in Section 2.1.
Moreover, by (9),

h(U) = H(Ψ)−1h(T(1, Ψ)) = H(Ψ)−1H(Ψ) = 1 a.s.
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Let model functions g, H be given. Then we can apply the following algorithm to simulate X:
1) Generate R with density f from Lemma 2.3.
2) Generate Ψ (independently of R) with density ϕΨ from Lemma 2.3.
3) Evaluate U = T(H−1(Ψ), Ψ) and X according to (6)
Step 2) is realised in several partial steps: First simulate Ψ1 with density ϕ1, then Ψ2

with density ϕ1,2(Ψ1, .)/ϕ1(Ψ1) and so forth until Ψd−1 with density ϕ1,...,d−1(Ψ1, . . . , Ψd−2, .)
/ϕ1,...,d−2(Ψ1, . . . , Ψd−2). For model class 4, the evaluation of the densities ϕ1,...,k can be done using
Lemma 5.1.

7 Estimation
Throughout this section, letX1, . . . ,Xn withXi = (Xi1, . . . , Xid)T be a sample of independent random vectors
having the density φg,h,µ,Σ according to (5) and (10). Suppose that function g belongs to the model class
{gθ : θ ∈ Θ1} with compact Θ1 ⊂ Rq1 as described above. Moreover, it is required that function H depends
on a parameter η such that H belongs to the model class {Hη : η ∈ Θ2}with compact Θ2 ⊂ Rq2 as described
above. Let Θ3 ⊂ Rd and Θ4 ⊂ (0,∞)d be compact sets.

In this section the aim is to �t the speci�c parametric model for the density φg,h,µ,Σ (cf. formula (5)) with
parameters µ, σ = (σ1, . . . , σd)T , η and θ, where Σ = diag(σ). The log likelihood function reads as follows

ln L(µ, σ, η, θ) =
n∑
i=1

ln gθ(hη(Σ−1(Xi − µ))) − n
d∑
j=1

ln σj − n ln(κ(η)).

Here κ(η) is the normalizing constant of the density which is determined by the formula in Lemma 2.1. A
maximization of the likelihood function w.r.t. the parameters leads to

L(µ̂n , σ̂n , η̂n , θ̂n) = max
µ̄∈Θ3 ,σ̄∈Θ4 ,η̄∈Θ2 ,θ̄∈Θ1

L(µ̄, σ̄, η̄, θ̄),

where µ̂n , σ̂n , η̂n , θ̂n are the maximum likelihood estimators. In applications, estimation of the parameters
corresponds to solving an optimization problem by using a computer program (for instance, by using R). For
this purpose, one needs good starting points for the parameters in view of the rather high dimension of the
problem.

Under appropriate assumptions, maximum likelihood estimators are asymptotically normally dis-
tributed (cf. Theorem 5.1 in [8] by Lehmann and Casella, p. 463)

(µ̂n , σ̂n , η̂n , θ̂n) d−→ N((µ, σ, η, θ), I(µ, σ, η, θ)−1) for n →∞,

where d−→ is the symbol for convergence in distribution. Here I(µ, σ, η, θ) = (Iij(δ))i,j=1...d+q with δT =
(δ1, . . . , δ2d+q1+q2 ) = (µT , σT , ηT , θT) denotes the information matrix which is given by

Iij(δ) = −E

 ∂
∂δi∂δj

ln gθ(hη(Σ−1(Xi − µ))) −
d∑
j=1

ln σj − ln(κ(η))

 .

8 Model checks

8.1 Checking the model for the distribution of the star-generalized radius

Let µ̂, σ̂, η̂, θ̂ be themaximum-Likelihood estimators for the parameters as explained in the previous section.
X1, · · · ,Xn is the sample as in the previous section. LetYi = Σ̂−1(Xi− µ̂). Here we consider the pseudo-sample
Y1, . . . ,Yn, and introduce

Ri = ‖Yi‖2 Hη̂(T̃(Yi))
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for i = 1, . . . , n. The corresponding empirical distribution function of Ri is given by

FnR(r) = 1
n

n∑
i=1

1 {Ri ≤ r} .

The order statistics of Ri are denoted by R(1), . . . , R(n) (R(j−1) ≤ R(j)). Based on a model function gθ (θ ∈ Θ1)
for the generating function, the model distribution function for the generalized radius can be evaluated by
(formula in Lemma 2.3)

FR(r|θ) =
r∫

0

gθ(s)sd−1ds.

In the following we consider the Anderson-Darling statistic which measures the discrepancy between the
model distribution and empirical distribution coming from the sample. This statistic is calculated by

An =
+∞∫
0

(
FnR(r) − FR(r | θ̂)

)2

FR(r | θ̂)
(

1 − FR(r | θ̂)
) dFR(r | θ̂)

= −1 −
n∑
i=1

2i − 1
n2

(
ln FR(R(i) | θ̂) + ln

(
1 − FR(R(n+1−i) | θ̂)

))
.

Let FexpR (x|λ) = 1 − e−λx be the distribution function of the exponential distribution. The exponential dis-
tribution is regarded as a reference distribution here. For comparisons we can calculate the approximation
coe�cient:

ρ̂ = 1 − A(Fn , FR(. | θ̂))
A(Fn , FexpR (. | λ̂))

(30)

(ρ̂ ≤ 1). A detailed study of this coe�cient can be found in [10]. Here we compare the actual model distri-
bution of R with the exponential distribution as the simplest choice. If ρ̂ is large enough, ideally close to 1,
the distribution of R can be considered as well-approximated. The application of goodness-of-�t tests like
the Kolmogorov test is straightforward and is omitted here. In the framework of elliptical distributions such
goodness-of-�t tests are considered in Batsidis and Zografos [3].

8.2 Checking the distribution of Ψ

Let
Ψ̂i = T̃(Σ̂−1(Xi − µ̂))

for i = 1, . . . , n. Ψ̂i is the vector of spherical angles of the normalized sample item. The goodness-of-
approximation of the one-dimensional distributions of Ψ1, . . . , Ψd−1 (marginal distributions of Ψ) can be
checked in the same way as described in the previous section with the uniform distribution as the reference
distribution.

Next we want to discuss brie�y a measure for the goodness-of-approximation of the copula of Ψ . Here
we pursue the approach using the Cramér-von Mises divergence. Concerning this approach and theoretical
properties of this divergence, we refer to [9]. Let FΨ (.|η) and Fj(.|η) be the distribution functions of Ψ and Ψj
depending on the model parameter η of function H. The corresponding density of Ψ is provided in Lemma
2.3. We introduce the model copula of Ψ :

Cη(ψ) = FΨ (F−1
1 (ψ1 | η), . . . , F−1

d−1(ψd−1 | η) | η)

for ψ ∈ Ad. We denote the empirical joint distribution function of the pseudo-sample Ψ̂1, . . . , Ψ̂n by Ĥn.
Let F̄n(x) = (F1n(x1), . . . , Fd−1,n(xd−1))T be the vector of the marginal empirical distribution functions of the
pseudo sample Ψ̂1, . . . , Ψ̂n for x = (x1, . . . , xd−1)T . The estimated Cramér-von Mises divergence is given by

D̂n(C) = 1
n

n∑
i=1

(
Ĥn(Ψ̂i) − C(F̄n(Ψ̂i))

)2
,
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whichmeasures the discrepancy between the empirical copula and the model copula C. Let Cη and C0 be the
copulas of the model and the independent copula (which serves as reference copula), respectively. From [9]
we can take the coe�cient of goodness-of-approximation:

ρ̂ = 1 −
D̂n(Cη̂)
D̂n(C0)

,

where η̂ is the estimator for the parameter η, and ρ̂ ≤ 1. The larger the coe�cient ρ̂ the better is the approxi-
mation of the distribution.

9 Real data examples

9.1 Example 1

In this section we consider the dataset 5 of Andrews and Herzberg [1]. The yield of grain and straw are the
two variables. Assuming the Pearson VII model for g and the model 1 for H, we achieved an approximation
coe�cient of 0.9846. The following Figures 9 and 10 show the data and the estimated density.

Figure 9: scatter plot of the data

The contour curves in Figure 10 are far away from being ellipses. Thus modelling with star-shaped distri-
butions makes sense.

9.2 Example 2

This example should show that the above described methods work even for economic data. Here we con-
sider weekly index data from Morgan Stanley Capital International of the world and LPX 50 index data for
the period April 2003 to December 2016. The LPX 50 Index is a global equity index covering the 50 largest
listed private equity companies which ful�l certain liquidity constraints. The index is well diversi�ed across
regions, investment- and �nancing styles, and vintage years. We computed the index values as the ratio of
subsequent values minus one. Let FΨ be the distribution function of Ψ . For the function H, we used class 1.
Fitting the distribution of the random vector by the maximum likelihood method, the following results were
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Figure 10: contour plot of the density.

obtained (ρ̂ according to (30)):
] model for g ρ̂ for FR ρ̂ for FΨ
Kotz type with s = 0 0.939 0.977
modi�ed exponential 0.757 0.989
Pearson VII with s = 0 0.990 0.992

parameter estimates for the last case: µ̂ = (0.003138, 0.003586)T , σ̂ = (0.033375, 0.097245)T , m̂ =
2.95742, â = 8.17546, b̂ = 2.15740, β̂ = 0.35080.

The model "Pearson VII" turns out to be the best one. The density and the data are depicted in Figures 11
and 12. The subsequent �gures show the distribution functions of R and Ψ .

Figure 11: scatter plot of the data

These �gures and the ρ̂ values show that the �tting was successful.
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Figure 12: contour plot of the density

Figure 13: empirical distribution function of R (black) and that of the model (red).

Figure 14: empirical distribution function of Ψ (black) and that of the model (red).
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10 Proofs
Proof of Lemma 2.1: Obviously, Σ−1(X − µ) has density ϕg,h,0,I . Applying the transformation (7) with trans-
formation determinant (8) and by q = rH(ψ), we obtain

P
{
X ∈ µ + ΣĀ

}
=

∫
Ā

ϕg,h,0,I(x) dx = κ−1
∫
Ā

g
(
hK(x)

)
dx

= κ−1
∫

[ψ
1
,ψ̄1]×...×[ψ

d−1
,ψ̄d−1]×[r/H(ψ), r̄/H(ψ)]

g(rH(ψ))rd−1∆̄(ψ) dψdr

= κ−1
∫

[ψ
1
,ψ̄1]×...×[ψ

d−1
,ψ̄d−1]

r̄∫
r

g(q)qd−1dq H(ψ)−d ∆̄(ψ) dψ

= κ−1
ψ̄d−1∫
ψ
d−1

. . .
ψ̄1∫
ψ

1

H(α)−d ∆̄(ψ) dψ1 . . . dψd−1

r̄∫
r

g(q)qd−1dq. (31)

This identity yields the �rst formula of the lemma. Moreover,
∫
Rd ϕg,h,0,I(x)dx = 1 implies the second asser-

tion of the lemma.�
Proof of Lemma 2.2: De�ne X̃ = Σ−1(X − µ) = (X̃(1), . . . , X̃(d))T . Then we have

EX = µ + ΣEX̃,
V(X(j)) = σ2

j V(X̃(j)) for j = 1 . . . d.

Thus

EX̃(j) = κ−1
∫
Rd

xjg
(
h(x)

)
dx

= κ−1
∞∫

0

∫
Ad

Ij(ψ) g(rH(ψ))rd ∆̄(ψ) dψdr

= κ−1Gd
∫
Ad

Ij(ψ)∆̄(ψ) H(ψ)−d−1 dψ.

Analogously,

V(X̃(j)) = κ−1
∫
Rd

x2
j g
(
h(x)

)
dx −

(
EX̃(j)

)2

= κ−1
∞∫

0

∫
Ad

I2j (ψ)g(rH(ψ))rd+1∆̄(ψ) dψdr −
(
EX̃(j)

)2

= κ−1Gd+1

∫
Ad

I2j (ψ)∆̄(ψ) H(ψ)−d−2 dψ −
(
EX̃(j)

)2
.

Combining the above formulas, we obtain the lemma.�
Proof of Lemma 2.3: From (31), we see that (R, Ψ) has the density

ϕ(R,Ψ)(q, ψ) = H(ψ)−d ∆̄(ψ) g(q)qd−1.

Hence R and Ψ are independent. Their densities can be gathered from this equation.�
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Proof of Theorem 2.4: Suppose that there are two di�erent quadruples of parameters (g1, h1, σ1, µ1)
and (g2, h2, σ2, µ2) ∈ G ×H × (0,∞)d × Rd with Σj = diag(σj) such that the corresponding densities of the
random vectors in (5) coincide

(κ1 det(Σ1))−1g1(h1(Σ−1
1 (x − µ1))) = (κ2 det(Σ2))−1g2(h2(Σ−1

2 (x − µ2))) (32)

for all x ∈ Rd. κ1 and κ2 denote the constant κ for the two densities. Let Γ(1) = {x : h1(x) = 1} and Γ(2) =
{x : h2(x) = 1} be speci�c level sets of h1, h2, respectively. There are density values v1, v2 ≥ 0 such that
v1 = ̸ v2, vj(κ1 det(Σ1)) ≠ g1(0) and vj(κ2 det(Σ2)) ≠ g2(0). By assumption Ag(ii), there are γ1, γ2 ∈ (0,∞)
such that g1(γ1) < g1(γ2), γj = min{γ ≥ 0 : g1(γ) = g1(γj)} for j = 1, 2, and there are γ3, γ4 ∈ (0,∞) such that
g2(γ3) < g2(γ4), γj = min{γ ≥ 0 : g2(γ) = g2(γj)} for j = 3, 4, and

vj = (κ1 det(Σ1))−1g1(γj) = (κ2 det(Σ2))−1g2(γ2+j) for j = 1, 2. (33)

Note that for every γ > 0, h1(Σ−1
1 (x − µ1)) = γ ⇔ x ∈ µ1 + γΣ1Γ(1). Obviously in view of (32), the level sets

for a density value equal to v1 and v2 have to coincide, respectively. Hence µ1+γjΣ1Γ(1) = µ2+γj+2Σ2Γ(2) (inner
boundaries of the level sets), which is equivalent to Γ(1) = γ−1

j Σ−1
1 (µ2−µ1)+γ−1

j γj+2Σ−1
1 Σ2Γ(2) for j = 1, 2. Note

that Γ(1) and Γ(2) are bounded sets. This implies immediately γ−1
j γj+2 = C1 for j = 1, 2 with a constant C1. If

Σ−1
1 (µ2−µ1) = ̸ 0holds, then γ1 = γ2 followswhich is a contradiction to g1(γ1) < g1(γ2). Hence Σ−1

1 (µ2−µ1) = 0,
and µ1 = µ2 = µ. Moreover, we have Γ(1) = C1Σ0Γ(2) with the diagonal matrix Σ0 = Σ−1

1 Σ2. Now let y ∈ Rd be
arbitrary. Then homogeneity of h1 implies h1(y)−1y ∈ Γ(1), and therefore C−1

1 h1(y)−1Σ−1
0 y ∈ Γ(2). Further

1 = h2

(
C−1

1 h1(y)−1Σ−1
0 y
)
,

h1(y) = h2(C−1
1 Σ−1

0 y)

using homogeneity of h2. Therefore C1Σ0 = I and h1 = h2 = h in view of AssumptionAh.
Next we consider the set M̄ = {µ+ t · e1 : t ≥ 0}, e1 = (1, 0, . . . , 0)T . Let σ11 = (Σ1)1,1, σ21 = (Σ2)1,1. From

(32) it follows for x ∈ M̄ that

g1(th(e1)σ−1
11) = κ1 det(Σ1)(κ2 det(Σ2))−1g2(th(e1)σ−1

21) for t ≥ 0,

g1(u) = C2g2(uC3) for u ≥ 0

with C2 = κ1 det(Σ1)(κ2 det(Σ2))−1, C3 = σ−1
21σ11 and C2 = Cd3. Applying Assumption Ag, one obtains that

C2 = C3 = 1, and hence g = g1 = g2. Further by (33), we have g(γj) = g(γj+2) for j = 1, 2, which implies
γ1 = γ3, γ2 = γ4, and C1 = 1. So we can conclude Σ0 = I, Σ1 = Σ2 and κ1 = κ2 from the de�nition of C2. This
is a contradiction to the assumption that two di�erent quadruples of parameters lead to the same density.�

Lemma 10.1. Function H of model class 4 ful�ls (27), and supα∈Ad Hη(α) < +∞.

Proof: For j = 1 . . . d − 2, we obtain

lim
αj→0+0

Hη(α)−1 =

1 +
j−1∑
l=1

al
l∏
k=1

sin2 αk

 .

This quantity depends only on α1, . . . , αj−1 which was required in (27). Further

Hη(α)−1 = 1 +
d−1∑
j=1

aj
j∏
k=1

sin2 αk

≥ 1 + min
m=1,...,d−1

m∑
j=1

aj > 0

for α ∈ Ad, which proves the lemma.�
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Proof of Lemma 5.1: Using the multinomial theorem, we obtain

H−dη (α) =

1 +
d−1∑
j=1

aj
j∏
k=1

sin2 αk

d

=
∑

n1 ,...,nd:n1+...+nd=d

d!
n1! . . . nd!

d−1∏
j=1

anjj
j∏
k=1

sin2nj αk

for α ∈ Ad. Observe that for integers m ≥ 0,

S(m) =
π∫

0

sinm x dx =
√
π
Γ
(m+1

2
)

Γ
(m+2

2
) .

Let k1, . . . , km ∈ {1, . . . , d − 1} be di�erent numbers, J1 = {k1, . . . , km} and J2 = {1, . . . , d − 1}\J1. De�ne
Ām = [0, π]d−1−m if d − 1 ∈ ̸ J2, and Ām = [0, π]d−2−m × [0, 2π) otherwise. Further by Lemma 2.3, we have

ϕk1 ,...,km (αk1 , . . . , αkm ) =
∫
Ām

ϕΨ (α)
∏
j∈J2

dαj

= κ−1
∫
Ām

∑
n1+...+nd=d

d!
n1! . . . nd!

d−1∏
j=1

anjj j∏
k=1

sin2nj αk


(d−2∏
k=1

sind−k−1 αk

)∏
j∈J2

dαj

= κ−1 ∑
n1+...+nd=d

d!
n1! . . . nd!

d−1∏
j=1

anjj

∫
Ām

d−1∏
k=1

d−1∏
j=k

sin2nj αk

(d−2∏
k=1

sind−k−1 αk

)∏
j∈J2

dαj

= κ−1 ∑
n1+...+nd=d

d!
n1! . . . nd!

d−1∏
j=1

anjj
∏
k∈J1

sin2(nk+...+nd−1)+d−k−1 αk

∏
k∈J2

∫
[0,νkπ]

sin2(nk+...+nd−1)+d−k−1 ᾱdᾱ

= κ−1 ∑
n1+...+nd=d

d!
n1! . . . nd!

d−1∏
j=1

anjj
∏
k∈J1

sinn̄k αk
∏
k∈J2

νkS(n̄k). (34)

for (αk1 , . . . , αkm ) ∈ Ām, νk and n̄k as above in the lemma. This completes the proof.�
Proof of Lemma 5.2: Considering the case J2 = {1, . . . , d − 1}, and Ām = Ad, identity (34) yields

κ−1 ∑
n1+...+nd=d

d!
n1! . . . nd!

d−1∏
j=1

anjj
d−1∏
k=1

νkS(n̄k) = 1. �
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