Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access April 9, 2020

Insurance applications of dependence modeling

An interview with Edward (Jed) Frees

  • Christian Genest EMAIL logo and Matthias Scherer
From the journal Dependence Modeling

References

[1] Bailey, A.L. (1950). Credibility procedures, Laplace’s generalization of Bayes’ rule and the combination of collateral knowledge with observed data. Proceedings of the Casualty Actuarial Society 37(67), pp. 7–23.Search in Google Scholar

[2] Bailey, A.L. (1950). Credibility procedures, Laplace’s generalization of Bayes’ rule and the combination of collateral knowledge with observed data: Discussion. Proceedings of the Casualty Actuarial Society 37(68), pp. 94–115.Search in Google Scholar

[3] Bühlmann, H. (1967). Experience rating and credibility. Astin Bull. 4(3), 199–207.10.1017/S0515036100008989Search in Google Scholar

[4] Bühlmann, H. and A. Gisler (2005). A Course in Credibility Theory and its Applications. Springer, Berlin.Search in Google Scholar

[5] Durante, F., G. Puccetti, and M. Scherer (2015). Building bridges between mathematics, insurance and ˝nance: An interview with Paul Embrechts. Depend. Model. 3, 17–28.Search in Google Scholar

[6] Embrechts, P., A.J. McNeil, and D. Straumann (1999). Correlation: Pitfalls and alternatives. RISK 12(5), 69–71.Search in Google Scholar

[7] Embrechts, P., A.J. McNeil, and D. Straumann (2002). Correlation and dependence in risk management: Properties and pitfalls. In M. Dempster (Ed.), Risk Management: Value at Risk and Beyond, pp. 176–223. Cambridge University Press.10.1017/CBO9780511615337.008Search in Google Scholar

[8] Frees, E.W. (1983). On Construction of Sequential Age Replacement Policies via Stochastic Approximation. PhD thesis, The University of North Carolina at Chapel Hill, Chapel Hill NC.Search in Google Scholar

[9] Frees, E.W. (1986). Nonparametric renewal function estimation. Ann. Statist. 14(4), 1366–1378. [Corr: 16(4), 1741.]10.1214/aos/1176350163Search in Google Scholar

[10] Frees, E.W. (1989). In˝nite order U-statistics. Scand. J. Statist. 16(1), 29–45.Search in Google Scholar

[11] Frees, E.W. (1994). Estimating densities of functions of observations. J. Amer. Statist. Assoc. 89(426), 517–525.10.1080/01621459.1994.10476776Search in Google Scholar

[12] Frees, E.W. (2004). Longitudinal and Panel Data. Cambridge University Press.10.1017/CBO9780511790928Search in Google Scholar

[13] Frees, E.W. (2007). James C. Hickman: An actuary who made a di˙erence. N. Am. Actuar. J. 11(1), 1–11.Search in Google Scholar

[14] Frees, E.W. (2015). Analytics of insurance markets. Ann. Rev. Financ. Econom. 7, 253–277.10.1146/annurev-financial-111914-041815Search in Google Scholar

[15] Frees, E.W, J. Carrière, and E.A. Valdez (1996). Annuity valuation with dependent mortality. J. Risk Insur. 63(2), 229–261.10.2307/253744Search in Google Scholar

[16] Frees, E.W., G. Meyers, and A.D. Cummings (2011). Summarizing insurance scores using a Gini index. J. Amer. Statist. Assoc. 106(495), 1085–1098.10.1198/jasa.2011.tm10506Search in Google Scholar

[17] Frees, E.W., G. Meyers, and A.D. Cummings (2012). Predictive modeling of multi-peril homeowners insurance. Variance 6(1), 11–31.Search in Google Scholar

[18] Frees, E.W., G. Meyers, and A.D. Cummings (2013). Insurance ratemaking and a Gini index. J. Risk Insur. 81(2), 335–366.10.1111/j.1539-6975.2012.01507.xSearch in Google Scholar

[19] Frees, E.W. and D. Ruppert (1985). Sequential nonparametric age replacement policies. Ann. Statist. 13(2), 650–662.10.1214/aos/1176349545Search in Google Scholar

[20] Frees, E.W. and D. Ruppert (1990). Estimation following a sequentially designed experiment. J. Amer. Statist. Assoc. 85(412), 1123–1129.10.1080/01621459.1990.10474984Search in Google Scholar

[21] Frees, E.W. and E.A. Valdez (1998). Understanding relationships using copulas. N. Am. Actuar. J. 2(1), 1–25.10.1080/10920277.1998.10595667Search in Google Scholar

[22] Frees, E.W. and P. Wang (2005). Credibility using copulas. N. Am. Actuar. J. 9(2), 31–48.10.1080/10920277.2005.10596196Search in Google Scholar

[23] Frees, E.W. and P. Wang (2006). Copula credibility for aggregate loss models. Insurance Math. Econom. 38(2), 360–373.10.1016/j.insmatheco.2005.10.004Search in Google Scholar

[24] Frees, E.W., V.R. Young, and Y. Luo (1999). A longitudinal data analysis interpretation of credibility models. Insurance Math. Econom. 24(3), 229–247.10.1016/S0167-6687(98)00055-9Search in Google Scholar

[25] Genest, C., M. Gendron, and M. Bourdeau-Brien (2009). The advent of copulas in ˝nance. Eur. J. Finance 15(7–8), 609–618.10.1080/13518470802604457Search in Google Scholar

[26] Genest, C., K. Ghoudi, and L.-P. Rivest (1998). Comments on “Understanding relationships using copulas,” by Edward Frees and Emiliano Valdez. N. Am. Actuar. J. 2(3), 143–149.10.1080/10920277.1998.10595749Search in Google Scholar

[27] Genest, C. and J. Nešlehová (2007). A primer on copulas for count data. Astin Bull. 37(2), 475–515.10.2143/AST.37.2.2024077Search in Google Scholar

[28] Hickman, J.C. and L. Heacox (1999). Credibility theory: The cornerstone of actuarial science. N. Am. Actuar. J. 3(2), 1–8.10.1080/10920277.1999.10595793Search in Google Scholar

[29] Mowbray, A.H. (1914). How extensive a payroll exposure is necessary to give a dependable pure premium? Proceedings of the Casualty Actuarial Society 1(1), pp. 24–30.Search in Google Scholar

[30] Norberg, R. (1986). Hierarchical credibility: Analysis of a random e˙ect linear model with nested classi˝cation. Scand. Act. J. 1986(3–4), 204–222.10.1080/03461238.1986.10413807Search in Google Scholar

[31] Puccetti, G. and M. Scherer (2018). Copulas, credit portfolios, and the broken heart syndrome: An interview with David X. Li. Depend. Model. 6, 114–130.10.1515/demo-2018-0007Search in Google Scholar

[32] Whitney, A.W. (1918). The theory of experience rating. Proceedings of the Casualty Actuarial Society 4(10), pp. 274–292.Search in Google Scholar

[33] Yang, L., E.W. Frees, and Z. Zhang (2020). Nonparametric estimation of copula sregression models with discrete outcomes. J. Amer. Statist. Assoc., to appear. Available at https://doi.org/10.1080/01621459.2018.1546586.10.1080/01621459.2018.1546586Search in Google Scholar

Received: 2020-03-18
Accepted: 2020-03-20
Published Online: 2020-04-09

© 2020 Christian Genest et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 3.2.2023 from https://www.degruyter.com/document/doi/10.1515/demo-2020-0005/html
Scroll Up Arrow