Abstract
We show that each infinite exchangeable sequence τ1, τ2, . . . of random variables of the generalised Marshall–Olkin kind can be uniquely linked to an additive subordinator via its deFinetti representation. This is useful for simulation, model estimation, and model building.
References
[1] Aldous, D. J. (1985). Exchangeability and Related Topics. Springer, Berlin.10.1007/BFb0099421Search in Google Scholar
[2] Applebaum, D. (2009). Lévy Processes and Stochastic Calculus. Second edition. Cambridge University Press.10.1017/CBO9780511809781Search in Google Scholar
[3] Berg, C., J. P. R. Christensen, and P. Ressel (1984). Harmonic Analysis on Semigroups, Springer, New York.10.1007/978-1-4612-1128-0Search in Google Scholar
[4] Bernhart, G., J.-F. Mai, and M. Scherer (2015). On the construction of low-parametric families of min-stable multivariate exponential distributions in large dimensions. Depend. Model. 3, 29–46.10.1515/demo-2015-0003Search in Google Scholar
[5] Bertoin, J. (1999). Subordinators: Examples and Applications. Springer, Berlin.10.1007/978-3-540-48115-7_1Search in Google Scholar
[6] de Finetti, B. (1937). La prévision: ses lois logiques, ses sources subjectives. Ann. Inst. H. Poincaré 7, 1–68.Search in Google Scholar
[7] Embrechts, P. and M. Hofert (2013). A note on generalized inverses. Math. Methods Oper. Res. 77(3), 423–432.10.1007/s00186-013-0436-7Search in Google Scholar
[8] Gnedin, A. and J. Pitman (2008). Moments of convex distribution functions and completely alternating sequences. In D. Nolan and T. Speed (Eds.), Probability and statistics: essays in honor of David A. Freedman., pp. 30–41, Inst. Math. Statist., Beachwood OH.Search in Google Scholar
[9] Li, X. and F. Pellerey (2011). Generalized Marshall–Olkin distributions and related bivariate aging properties. J. Multivariate Anal. 102(10), 1399–1409.10.1016/j.jmva.2011.05.006Search in Google Scholar
[10] Lin, J. and X. Li (2014). Multivariate generalized Marshall–Olkin distributions and copulas. Methodol. Comput. Appl. Probab. 16(1), 53–78.10.1007/s11009-012-9297-4Search in Google Scholar
[11] Mai, J.-F. (2010). Extendibility of Marshall–Olkin Distributions via Lévy Subordinators and an Application to Portfolio Credit Risk. PhD thesis, Technische Universität München, Germany.Search in Google Scholar
[12] Mai, J.-F. (2014). Multivariate Exponential Distributions with Latent Factor Structure and Related Topics. Habilitation thesis, Technische Universität München, Germany.Search in Google Scholar
[13] Mai, J.-F. (2019). The infinite extendibility problem for exchangeable real-valued random vectors. Available at: https://arxiv.org/abs/1907.04054.Search in Google Scholar
[14] Mai, J.-F., S. Schenk, and M. Scherer (2016). Exchangeable exogenous shock models. Bernoulli 22(2), 1278–1299.10.3150/14-BEJ693Search in Google Scholar
[15] Mai, J.-F., S. Schenk, and M. Scherer (2017). Two novel characterizations of self-decomposability on the half-line. J. Theoret. Probab. 30(1), 365–383.10.1007/s10959-015-0644-6Search in Google Scholar
[16] Mai, J.-F. and M. Scherer (2009a). E˛ciently sampling exchangeable Cuadras–Augé copulas in high dimensions. Inform. Sci. 179(17), 2872–2877.10.1016/j.ins.2008.09.004Search in Google Scholar
[17] Mai, J.-F. and M. Scherer (2009b). Lévy-frailty copulas. J. Multivariate Anal. 100(7), 1567–1585.10.1016/j.jmva.2009.01.010Search in Google Scholar
[18] Mai, J.-F. and M. Scherer (2013). Sampling exchangeable and hierarchical Marshall-Olkin distributions. Comm. Statist. Theory Methods 42(4), 619–632.10.1080/03610926.2011.615437Search in Google Scholar
[19] Mai, J.-F. and M. Scherer (2014). Characterization of extendible distributions with exponential minima via processes that are infinitely divisible with respect to time. Extremes 17(1), 77–95.10.1007/s10687-013-0175-4Search in Google Scholar
[20] Mai, J.-F. and M. Scherer (2017). Simulating Copulas: Stochastic Models, Sampling Algorithms and Applications. Second edition. World Scientific.10.1142/10265Search in Google Scholar
[21] Marshall, A. W. and I. Olkin (1967). A multivariate exponential distribution. J. Amer. Statist. Assoc. 62(317), 30–44.10.1080/01621459.1967.10482885Search in Google Scholar
[22] Muliere, P. and M. Scarsini (1987). Characterization of a Marshall–Olkin type class of distributions. Ann. Inst. Statist. Math. 39(2), 429–441.10.1007/BF02491480Search in Google Scholar
[23] Rüschendorf, L. (2009). On the distributional transform, Sklar’s theorem, and the empirical copula process. J. Statist. Plann. Inference 139(11), 3921–3927.10.1016/j.jspi.2009.05.030Search in Google Scholar
[24] Sato, K.-I. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press.Search in Google Scholar
[25] Schenk, S. (2016). Exchangeable Exogenous Shock Models. PhD thesis, Technische Universität München, Germany.Search in Google Scholar
[26] Schilling, R. L., R. Song, and Z. Vondracek (2012). Bernstein Functions. Theory and Applications. Second edition. De Gruyter, Berlin.10.1515/9783110269338Search in Google Scholar
© 2020 Henrik Sloot, published by De Gruyter
This work is licensed under the Creative Commons Attribution 4.0 International License.