Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access May 24, 2021

Multivariate radial symmetry of copula functions: finite sample comparison in the i.i.d case

  • Monica Billio EMAIL logo , Lorenzo Frattarolo and Dominique Guégan
From the journal Dependence Modeling


Given a d-dimensional random vector X = (X1, . . ., Xd), if the standard uniform vector U obtained by the component-wise probability integral transform (PIT) of X has the same distribution of its point reflection through the center of the unit hypercube, then X is said to have copula radial symmetry. We generalize to higher dimensions the bivariate test introduced in [11], using three different possibilities for estimating copula derivatives under the null. In a comprehensive simulation study, we assess the finite-sample properties of the resulting tests, comparing them with the finite-sample performance of the multivariate competitors introduced in [17] and [1].

MSC 2010: 62G10; 62G30; 62H05; 62H15


[1] Bahraoui, T. and J.-F., Quessy (2017). Tests of radial symmetry for multivariate copulas based on the copula characteristic function. Electron. J. Stat. 11(1), 2066–2096.10.1214/17-EJS1280Search in Google Scholar

[2] Bouzebda, S. and M., Cherfi (2012). Test of symmetry based on copula function. J. Statist. Plann. Inference. 142(5), 1262–1271.10.1016/j.jspi.2011.12.009Search in Google Scholar

[3] Bücher, A. and I., Kojadinovic (2016). A dependent multiplier bootstrap for the sequential empirical copula process under strong mixing. Bernoulli. 22(2), 927–968.10.3150/14-BEJ682Search in Google Scholar

[4] Bücher, A. and S., Volgushev (2013). Empirical and sequential empirical copula processes under serial dependence. J. Multivariate Anal. 119, 61–70.10.1016/j.jmva.2013.04.003Search in Google Scholar

[5] Carabarin-Aguirre, A. and B. G., Ivanoff (2010). Estimation of a distribution under generalized censoring. J. Multivariate Anal. 101(6), 1501–1519.10.1016/j.jmva.2009.12.016Search in Google Scholar

[6] Dehgani, A., Dolati, A. and M., Úbeda Flores (2013). Measures of radial asymmetry for bivariate random vectors. Statist. Papers. 54(2), 271–286.10.1007/s00362-011-0425-ySearch in Google Scholar

[7] Demarta, S. and A. J., McNeil (2005) The t copula and related copulas. Int. Stat. Rev. 73(1), 111–129.10.1111/j.1751-5823.2005.tb00254.xSearch in Google Scholar

[8] Einmahl, J. H. J. (1987). Multivariate Empirical Processes. PhD thesis, Centrum voor Wiskunde en Informatica, Amsterdam.Search in Google Scholar

[9] Fang, K. T., Kotz, S. and K. W., Ng (1990). Symmetric Multivariate and Related Distributions. Chapman and Hall, London.10.1007/978-1-4899-2937-2Search in Google Scholar

[10] Favre, A.-C., Quessy, J.-F. and M.-H., Toupin (2018). The new family of Fisher copulas to model upper tail dependence and radial asymmetry: properties and application to high-dimensional rainfall data. Environmetrics 29(3), Article ID e2494, 17 pages.10.1002/env.2494Search in Google Scholar

[11] Genest, C. and J. G., Nešlehová (2014). On tests of radial symmetry for bivariate copulas. Statist. Papers. 55(4), 1107–1119.10.1007/s00362-013-0556-4Search in Google Scholar

[12] Hammersley, J. M. and K. W., Morton (1956). A new Monte Carlo technique: antithetic variates. Proc. Cambridge Philos. Soc. 52, 449–475.10.1017/S0305004100031455Search in Google Scholar

[13] Hildebrandt, T. H. (1963) Introduction to the Theory of Integration. Academic Press, New York.Search in Google Scholar

[14] Hofert, M. (2008). Sampling Archimedean copulas. Comput. Statist. Data Anal. 52(12), 5163–5174.10.1016/j.csda.2008.05.019Search in Google Scholar

[15] Hofert, M., I., Kojadinovic, M., Maechler and J., Yan (2020). copula: Multivariate Dependence with Copulas. R package version 1.0-1. Available on CRAN.Search in Google Scholar

[16] Joe, H. (2014). Dependence Modeling with Copulas. CRC Press, Boca Raton FL.10.1201/b17116Search in Google Scholar

[17] Krupskii, P. (2017). Copula-based measures of reflection and permutation asymmetry and statistical tests. Statist. Papers. 58(4), 1165–1187.10.1007/s00362-016-0743-1Search in Google Scholar

[18] Lee, W. and J. Y., Ahn (2014). On the multidimensional extension of countermonotonicity and its applications. Insurance Math. Econom. 56, 68–79.10.1016/j.insmatheco.2014.03.002Search in Google Scholar

[19] Li, B. and M. G., Genton (2013). Nonparametric identification of copula structures. J. Amer. Statist. Assoc. 108(502), 666–675.10.1080/01621459.2013.787083Search in Google Scholar

[20] Nelsen, R. B. (1993). Some concepts of bivariate symmetry. J. Nonparametr. Statist. 3(1), 95–101.10.1080/10485259308832574Search in Google Scholar

[21] Nelsen, R. B. (2006). An Introduction to Copulas. Second edition. Springer, New York.Search in Google Scholar

[22] Nelsen, R. B. and M., Úbeda Flores (2012). Directional dependence in multivariate distributions. Ann. Inst. Statist. Math. 64(3), 677–685.10.1007/s10463-011-0329-6Search in Google Scholar

[23] Quessy, J.-F. (2016). A general framework for testing homogeneity hypotheses about copulas. Electron. J. Stat. 10(1), 1064–1097.10.1214/16-EJS1134Search in Google Scholar

[24] Quessy, J.-F. and M., Durocher (2019). The class of copulas arising from squared distributions: properties and inference. Econom. Stat. 12, 148–166.10.1016/j.ecosta.2019.02.002Search in Google Scholar

[25] Rémillard, B. and O., Scaillet (2009). Testing for equality between two copulas. J. Multivariate Anal. 100(3), 377–386.10.1016/j.jmva.2008.05.004Search in Google Scholar

[26] Rosco, J. F. and H., Joe, H. (2013). Measures of tail asymmetry for bivariate copulas. Statist. Papers. 54(3), 709–726.10.1007/s00362-012-0457-ySearch in Google Scholar

[27] Segers, J. (2012). Asymptotics of empirical copula processes under non-restrictive smoothness assumptions. Bernoulli. 18(3), 764–782.10.3150/11-BEJ387Search in Google Scholar

[28] Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8, 229–231.Search in Google Scholar

[29] van der Vaart, A. W. and J. A., Wellner (1996). Weak Convergence and Empirical Processes. Springer, New York.10.1007/978-1-4757-2545-2Search in Google Scholar

[30] Weibel, M., D., Luethi and W., Breymann (2020). ghyp: Generalized Hyperbolic Distribution and Its Special Cases. R package version 1.6.1. Available on CRAN.Search in Google Scholar

Received: 2021-01-05
Accepted: 2021-04-07
Published Online: 2021-05-24

© 2021 Monica Billio et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 22.2.2024 from
Scroll to top button