Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access July 23, 2021

Detecting departures from meta-ellipticity for multivariate stationary time series

Axel Bücher, Miriam Jaser and Aleksey Min
From the journal Dependence Modeling

Abstract

A test for detecting departures from meta-ellipticity for multivariate stationary time series is proposed. The large sample behavior of the test statistic is shown to depend in a complicated way on the underlying copula as well as on the serial dependence. Valid asymptotic critical values are obtained by a bootstrap device based on subsampling. The finite-sample performance of the test is investigated in a large-scale simulation study, and the theoretical results are illustrated by a case study involving financial log returns.

MSC 2010: 62H15; 62M10

References

[1] Aas, K., C. Czado, A. Frigessi and H. Bakken (2009). Pair-copula constructions of multiple dependence. Insurance Math. Econom. 44(2), 182–198.10.1016/j.insmatheco.2007.02.001Search in Google Scholar

[2] Abdous, B., C. Genest and B. Rémillard (2005). Dependence properties of meta-elliptical distributions. In P. Duchesne and B. Rémillard (Eds.), Statistical Modeling and Analysis for Complex Data Problems, pp. 1–15. Springer, New York.10.1007/0-387-24555-3_1Search in Google Scholar

[3] Berghaus, B. and A. Bücher (2017). Goodness-of-fit tests for multivariate copula-based time series models. Econometric Theory 33(2), 292–330.10.1017/S0266466615000419Search in Google Scholar

[4] Blomqvist, N. (1950). On a measure of dependence between two random variables. Ann. Math. Stat. 21(4), 593–600.10.1214/aoms/1177729754Search in Google Scholar

[5] Bücher, A. and I. Kojadinovic (2015). An overview of nonparametric tests of extreme-value dependence and of some related statistical procedures. In D. Dey and J. Yan (Eds.), Extreme Value Modeling and Risk Analysis, pp. 377–398. Chapman and Hall, New York.Search in Google Scholar

[6] Bücher, A. and I. Kojadinovic (2016). Dependent multiplier bootstraps for non-degenerate U-statistics under mixing conditions with applications. J. Statist. Plann. Inference 170, 83–105.10.1016/j.jspi.2015.09.006Search in Google Scholar

[7] Bücher, A., H. Dette and S. Volgushev (2012). A test for Archimedeanity in bivariate copula models. J. Multivariate Anal. 110, 121–132.10.1016/j.jmva.2012.01.026Search in Google Scholar

[8] Bücher, A. and I. Kojadinovic (2019). A note on conditional versus joint unconditional weak convergence in bootstrap consistency results. J. Theoret. Probab. 32(3), 1145–1165.10.1007/s10959-018-0823-3Search in Google Scholar

[9] Bücher, A. and S. Volgushev (2013). Empirical and sequential empirical copula processes under serial dependence. J. Multivariate Anal. 119, 61–70.10.1016/j.jmva.2013.04.003Search in Google Scholar

[10] Charpentier, A., A.-L. Fougères, C. Genest and J. Nešlehová (2014). Multivariate Archimax copulas. J. Multivariate Anal. 126, 118–136.10.1016/j.jmva.2013.12.013Search in Google Scholar

[11] Chicheportiche, R. and J.-P. Bouchard (2012). The joint distribution of stock returns is not elliptical. Int. J. Theor. Appl. Finance 15(3), Article ID 1250019, 23 pages.10.1142/S0219024912500197Search in Google Scholar

[12] Davison, A. C., S. A. Padoan and M. Ribatet (2012). Statistical modeling of spatial extremes. Statist. Sci. 27(2), 199–201.10.1214/11-STS376Search in Google Scholar

[13] Dehling, H. and M. Wendler (2010). Central limit theorem and the bootstrap for U-statistics of strongly mixing data. J. Multivariate Anal. 101(1), 126–137.10.1016/j.jmva.2009.06.002Search in Google Scholar

[14] Derumigny, A. and J.-D. Fermanian (2017). About tests of the “simplifying” assumption for conditional copulas. Depend. Model. 5, 154–197.10.1515/demo-2017-0011Search in Google Scholar

[15] Fang, H.-B., K.-T. Fang and S. Kotz (2002). The meta-elliptical distributions with given marginals. J. Multivariate Anal. 82(1), 1–16.10.1006/jmva.2001.2017Search in Google Scholar

[16] Fang, K. T., S. Kotz and K. W. Ng (1990). Symmetric Multivariate and Related Distributions. Chapman and Hall, London.10.1007/978-1-4899-2937-2Search in Google Scholar

[17] Fermanian, J-D. (2013). An overview of the goodness-of-fit test problem for copulas. In P. Jaworski, F. Durante and W. K. Härdle (Eds.), Copulae in Mathematical and Quantitative Finance, pp. 61–89. Springer, Heidelberg.10.1007/978-3-642-35407-6_4Search in Google Scholar

[18] Genest, C. and A.-C. Favre (2007). Everything you always wanted to know about copula modeling but were afraid to ask. J. Hydrol. Eng. 12(4), 347–368.10.1061/(ASCE)1084-0699(2007)12:4(347)Search in Google Scholar

[19] Genest, C., A.-C. Favre, J. Béliveau and C. Jacques (2007). Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resources Research 43(9), Article ID W09401, 12 pages.10.1029/2006WR005275Search in Google Scholar

[20] Genest, C. and J. Nešlehová (2014). On tests of radial symmetry for bivariate copulas. Statist. Papers 55(4), 1107–1119.10.1007/s00362-013-0556-4Search in Google Scholar

[21] Genest, C., B. Rémillard and D. Beaudoin (2009). Goodness-of-fit tests for copulas: a review and a power study. Insurance Math. Econom. 44(2), 199–213.10.1016/j.insmatheco.2007.10.005Search in Google Scholar

[22] Genest, C., J. Nešlehová and J.-F. Quessy (2012). Tests of symmetry for bivariate copulas. Ann. Inst. Statist. Math. 64(4), 811–834.10.1007/s10463-011-0337-6Search in Google Scholar

[23] Genest, C., A. Carabarín-Aguirre and F. Harvey (2013). Copula parameter estimation using Blomqvist’s beta. J. SFdS, 154(1), 5–24.Search in Google Scholar

[24] Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 19, 293–325.10.1214/aoms/1177730196Search in Google Scholar

[25] Jaser, M. (2021). Goodness-of-fit Tests for Elliptical Copulas. PhD thesis, Technical University of Munich, Germany. Available at https://mediatum.ub.tum.de/doc/1579854/1579854.pdf.Search in Google Scholar

[26] Jaser, M., S. Haug and A. Min (2017). A simple non-parametric goodness-of-fit test for elliptical copulas. Depend. Model. 5, 330–353.10.1515/demo-2017-0020Search in Google Scholar

[27] Kendall, M.G. and B. Babington Smith (1940). On the method of paired comparisons. Biometrika 31, 324–345.10.1093/biomet/31.3-4.324Search in Google Scholar

[28] Kojadinovic, I. and K. Stemikovskaya (2019). Subsampling (weighted smooth) empirical copula processes. J. Multivariate Anal. 173, 704–723.10.1016/j.jmva.2019.05.007Search in Google Scholar

[29] Kojadinovic, I., J. Yan and M. Holmes (2011). Fast large-sample goodness-of-fit tests for copulas. Statist. Sinica 21(2), 841–871.10.5705/ss.2011.037aSearch in Google Scholar

[30] Mai, J. and M. Scherer (2014). Financial Engineering with Copulas Explained. Palgrave Macmillan, Basingstoke.10.1057/9781137346315Search in Google Scholar

[31] McNeil, A.J., R. Frey and P. Embrechts (2005). Quantitative Risk Management. Princeton University Press.Search in Google Scholar

[32] Nasri, B. R. (2020). On non-central squared copulas. Statist. Probab. Lett. 161, to appear. Available at https://www.sciencedirect.com/science/article/pii/S0167715220300079.Search in Google Scholar

[33] Nelsen, R. B. (2006). An Introduction to Copulas. Second edition. Springer, New York.Search in Google Scholar

[34] Okhrin, O., Y. Okhrin and W. Schmid (2013). On the structure and estimation of hierarchical Archimedean copulas. J. Econometrics 173(2), 189–204.10.1016/j.jeconom.2012.12.001Search in Google Scholar

[35] Peng, L. (2008). Estimating the probability of a rare event via elliptical copulas. N. Am. Actuar. J. 12(2), 116–128.10.1080/10920277.2008.10597506Search in Google Scholar

[36] Politis, D. N., J. P. Romano and M. Wolf (1999). Subsampling. Springer, New York.10.1007/978-1-4612-1554-7Search in Google Scholar

[37] Quessy, J.-F. (2020). On nonparametric tests of multivariate meta-ellipticity. Statist. Papers, to appear. Available at https://doi.org/10.1007/s00362-020-01189-x.10.1007/s00362-020-01189-xSearch in Google Scholar

[38] Rémillard, B. and O. Scaillet (2009). Testing for equality between two copulas. J. Multivariate Anal. 100(3), 377–386.10.1016/j.jmva.2008.05.004Search in Google Scholar

[39] Rosenblatt, M. (1952). Remarks on a multivariate transformation. Ann. Math. Stat. 23, 470–472.10.1214/aoms/1177729394Search in Google Scholar

[40] Schmid, F. and R. Schmidt (2007). Nonparametric inference on multivariate versions of Blomqvist’s beta and related measures of tail dependence. Metrika 66(3), 323–354.10.1007/s00184-006-0114-3Search in Google Scholar

[41] Segers, J. (2012). Asymptotics of empirical copula processes under non-restrictive smoothness assumptions. Bernoulli 18(3), 764–782.10.3150/11-BEJ387Search in Google Scholar

[42] Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8, 229–231.Search in Google Scholar

[43] Valdez, E. A. and A. Chernih (2003). Wang’s capital allocation formula for elliptically contoured distributions. Insurance Math. Econom. 33(3), 517–532.10.1016/j.insmatheco.2003.07.003Search in Google Scholar

[44] van der Vaart, A. W. and J. A. Wellner (1996). Weak Convergence and Empirical Processes. Springer, New York.10.1007/978-1-4757-2545-2Search in Google Scholar

[45] van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press.Search in Google Scholar

Received: 2021-02-23
Accepted: 2021-06-15
Published Online: 2021-07-23

© 2021 Axel Bücher et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Scroll Up Arrow