Abstract
Triggered by a recent article establishing the surprising result that within the class of bivariate Archimedean copulas 𝒞ar different notions of convergence - standard uniform convergence, convergence with respect to the metric D1, and so-called weak conditional convergence - coincide, in the current contribution we tackle the natural question, whether the obtained equivalence also holds in the larger class of associative copulas 𝒞a. Building upon the fact that each associative copula can be expressed as (finite or countably infinite) ordinal sum of Archimedean copulas and the minimum copula M we show that standard uniform convergence and convergence with respect to D1 are indeed equivalent in 𝒞a. It remains an open question whether the equivalence also extends to weak conditional convergence. As by-products of some preliminary steps needed for the proof of the main result we answer two conjectures going back to Durante et al. and show that, in the language of Baire categories, when working with D1 a typical associative copula is Archimedean and a typical Archimedean copula is strict.
References
[1] Alsina, C., B. Schweizer, and M. Frank (2006). Associative Functions. World Scientific Publishing, Singapore.Search in Google Scholar
[2] Billingsley, P. (1999). Convergence of Probability Measures. Second edition. John Wiley & Sons, New York.10.1002/9780470316962Search in Google Scholar
[3] Bruckner, A. M, J. B. Bruckner, and B. S. Thomson (2008). Real Analysis. Second edition. Available at http://classicalrealanalysis.info/com/Real-Analysis.php.Search in Google Scholar
[4] Charpentier, A. and J. Segers (2008). Convergence of Archimedean copulas. Statist. Probab. Lett. 78(4), 412–419.10.1016/j.spl.2007.07.014Search in Google Scholar
[5] Darsow, W. F., B. Nguyen, and E. T. Olsen (1992). Copulas and Markov processes. Illinois J. Math. 36(4), 600–642.10.1215/ijm/1255987328Search in Google Scholar
[6] Durante, F., J. Fernández-Sánchez, and W. Trutschnig (2016). Baire category results for exchangeable copulas. Fuzzy Sets Syst. 284, 146–151.10.1016/j.fss.2015.04.010Search in Google Scholar
[7] Durante, F. and P. Jaworski (2010). A New Characterization of Bivariate Copulas. Comm. Statist. Theory Methods 39, 2901–2912.10.1080/03610920903151459Search in Google Scholar
[8] Durante, F. and C. Sempi (2016). Principles of Copula Theory. CRC Press, Boca Raton FL.Search in Google Scholar
[9] Fernández-Sánchez, J. and W. Trutschnig (2015a). Conditioning based metrics on the space of multivariate copulas and their interrelation with uniform and levelwise convergence and Iterated Function Systems. J. Theoret. Probab. 28, 1311–1336.10.1007/s10959-014-0541-4Search in Google Scholar
[10] Fernández-Sánchez, J. and W. Trutschnig (2015b). Singularity aspects of Archimedean copulas. J. Math. Anal. Appl. 432(1), 103–113.10.1016/j.jmaa.2015.06.036Search in Google Scholar
[11] Fernández-Sánchez, J. and W. Trutschnig (2016). Some members of the class of (quasi-)copulas with given diagonal from the Markov kernel perspective. Comm. Statist. Theory Methods 45(5), 1508–1526.10.1080/03610926.2013.864856Search in Google Scholar
[12] Fredricks, G. A. and R. B. Nelsen (2002). The Bertino family of copulas. In Cuadras C.M., Fortiana J., Rodriguez-Lallena J.A. (Eds.), Distributions With Given Marginals and Statistical Modelling, pp. 81–91. Springer, Dordrecht.10.1007/978-94-017-0061-0_10Search in Google Scholar
[13] Genest, C. and L.-P. Rivest (1993). Statistical inference procedures for bivariate Archimedean copulas. J. Amer. Statist. Assoc. 88(423), 1034–1043.10.1080/01621459.1993.10476372Search in Google Scholar
[14] Griessenberger, F., J. Fernández-Sánchez, and W. Trutschnig (2021). Some properties of double shuffles of bivariate copulas and (extreme) copulas invariant with respect to Lüroth double shuffles. Fuzzy Sets Syst., to appear. Available at https://doi.org/10.1016/j.fss.2021.02.014.10.1016/j.fss.2021.02.014Search in Google Scholar
[15] Kallenberg, O. (2002). Foundations of Modern Probability. Springer, New York.10.1007/978-1-4757-4015-8Search in Google Scholar
[16] Kannan, R. and C. K. Krueger (1996). Advanced Analysis. Springer, New York.10.1007/978-1-4613-8474-8Search in Google Scholar
[17] Kasper, T., S. Fuchs, and W. Trutschnig (2020). On weak conditional convergence of bivariate Archimedean and extreme value copulas, and consequences to nonparametric estimation. Bernoulli, to appear. Available at http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal-papers.Search in Google Scholar
[18] Klement, E. P., R. Mesiar, and E. Pap (2000). Triangular Norms. Springer, Dordrecht.10.1007/978-94-015-9540-7Search in Google Scholar
[19] Klement, E. P., R. Mesiar, and E. Pap (2001). Uniform approximation of associative copulas by strict and non-strict copulas. Illinois J. Math. 45(4), 1393–1400.10.1215/ijm/1258138075Search in Google Scholar
[20] Klenke, A. (2008). Wahrscheinlichkeitstheorie. Springer, Berlin.Search in Google Scholar
[21] Kosmol, P. (2010). Optimierung und Approximation. De Gruyter, Berlin.10.1515/9783110218152Search in Google Scholar
[22] Lancaster, H. O. (1963). Correlation and complete dependence of random variables. Ann. Math. Statist. 34(4), 1315–1321.10.1214/aoms/1177703867Search in Google Scholar
[23] Ling, C.-H. (1965). Representation of associative functions. Publ. Math. Debrecen 12, 189–212.10.5486/PMD.1965.12.1-4.19Search in Google Scholar
[24] Li, X., P. Mikusinski, M.D. Taylor (1998). Strong approximation of copulas. J. Math. Anal. Appl. 255(2), 608-62310.1006/jmaa.1998.6056Search in Google Scholar
[25] Moynihan, R. (1978). On τT semigroups of probability distribution functions II. Aequationes Math. 17, 19–40.10.1007/BF01818536Search in Google Scholar
[26] Mroz, T., S. Fuchs, W. Trutschnig (2021). How simplifying and flexible is the simplifying assumption in pair-copula constructions - analytic answers in dimension three and a glimpse beyond. Electron. J. Stat. 15, 1951-199210.1214/21-EJS1832Search in Google Scholar
[27] Nelsen, R. B. (2006). An Introduction to Copulas. Second edition. Springer, New York.Search in Google Scholar
[28] Nelsen, R. B., J. J. Quesada-Molina, J. A. Rodríguez-Lallena, and M. Úbeda Flores (2009). Kendall distribution functions and associative copulas. Fuzzy Sets Syst. 160(1), 52–57.10.1016/j.fss.2008.05.001Search in Google Scholar
[29] Olsen, E.T., W.F. Darsow, B. Nguyen (1996). Copulas and Markov operators, in L. Rüschendorf, B. Schweizer, and M.D. Taylor (Eds.), Distributions with Fixed Marginals and Related Topics, pp. 244-259. Institute od Mathematical Statistics, Hayward CA.10.1214/lnms/1215452623Search in Google Scholar
[30] Oxtoby, J. C. (1980). Measure and Category. Springer, New York.10.1007/978-1-4684-9339-9Search in Google Scholar
[31] Pollard, D. (2001). A User’s Guide to Measure Theoretic Probability. Cambridge University Press.10.1017/CBO9780511811555Search in Google Scholar
[32] Rockafeller, R.T. (1972). Convex Analysis. Princeton University Press.Search in Google Scholar
[33] Rudin, W. (1976). Principles of Mathematical Analysis. McGraw-Hill, Auckland.Search in Google Scholar
[34] Schreyer, M., R. Paulin, and W. Trutschnig (2017). On the exact region determined by Kendall’s τ and Spearman’s ϱ. J. R. Stat. Soc. Ser. B Stat. Methodol. 79(2), 613–633.10.1111/rssb.12181Search in Google Scholar
[35] Spanhel, F. and M. Kurz (2019). Simplified vine copula models: Approximations based on the simplifying assumption. Electron. J. Stat. 13, 1254-1291.10.1214/19-EJS1547Search in Google Scholar
[36] Trutschnig, W. (2011). On a strong metric on the space of copulas and its induced dependence measure. J. Math. Anal. Appl. 384(2), 690–705.10.1016/j.jmaa.2011.06.013Search in Google Scholar
[37] Trutschnig, W. (2012). Some results on the convergence of (quasi-) copulas. Fuzzy Sets Syst. 191, 113–121.10.1016/j.fss.2011.06.013Search in Google Scholar
[38] Trutschnig, W. and J. Fernández-Sánchez (2012). Idempotent and multivariate copulas with fractal support. J. Statist. Plann. Inference 142(12), 3086–3096.10.1016/j.jspi.2012.06.012Search in Google Scholar
© 2021 Thimo M. Kasper et al., published by De Gruyter
This work is licensed under the Creative Commons Attribution 4.0 International License.