Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 12, 2014

Molecular functionality of CYP2C9 polymorphisms and their influence on drug therapy

Yazun Bashir Jarrar and Su-Jun Lee


CYP2C9 metabolizes approximately 20% of clinically used drugs, including the narrow therapeutic window drugs warfarin and phenytoin. More than 16,000 variants have been reported in the National Center for Biotechnology Information CYP2C9 database, as well as 58 alleles in the official P450 Nomenclature Committee website. Two single nucleotide polymorphisms represented by the CYP2C9*2 and CYP2C9*3 alleles have been studied extensively. However, in addition to these two alleles, other genetic factors and an individual’s biological characteristics contribute to the overall drug phenotype. A major bottleneck for CYP2C9 pharmacogenomics in clinical field applications is the lack of knowledge regarding the numerous genetic polymorphisms and their molecular functionalities. An unmet gap exists between the ever-growing number of genetic variants and their molecular mechanisms. In the present review, functional changes of all known CYP2C9 protein coding alleles were predicted using in silico analyses and compared with the in vitro and in vivo data. We also summarize functional information from recently reported CYP2C9 variants. Regarding the previously known CYP2C9 variants, we provide an update on the functional information obtained from in vitro and in vitro data.

Corresponding author: Su-Jun Lee, Department of Pharmacology, Pharmacogenomics Research Center, Inje University College of Medicine, Inje University, 633-165 Gaegum-dong, Busanjin-gu, Busan, Republic of Korea, E-mail:


This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. R13-2007-023-00000-0) and by a grant of the National Project for Personalized Genomic Medicine, Ministry for Health and Welfare, Republic of Korea (A111218-PG02).

Conflict of interest statement

Authors’ conflict of interest disclosure: The authors stated that there are no conflicts of interest regarding the publication of this article. Research support played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.


1. Spriet I, Meersseman W, de Hoon J, von Winckelmann S, Wilmer A, Willems L. Mini-series: II. clinical aspects. clinically relevant CYP450-mediated drug interactions in the ICU. Intensive Care Med 2009;35:603–12.10.1007/s00134-008-1383-2Search in Google Scholar

2. Wang H, Zhao Y, Bradbury JA, Graves JP, Foley J, Blaisdell JA, et al. Cloning, expression, and characterization of three new mouse cytochrome p450 enzymes and partial characterization of their fatty acid oxidation activities. Mol Pharmacol 2004;65:1148–58.10.1124/mol.65.5.1148Search in Google Scholar

3. Wang D, Sun X, Gong Y, Gawronski BE, Langaee TY, Shahin MH, et al. CYP2C9 promoter variable number tandem repeat polymorphism regulates mRNA expression in human livers. Drug Metab Dispos 2012;40:884–91.10.1124/dmd.111.044255Search in Google Scholar

4. Klose TS, Blaisdell JA, Goldstein JA. Gene structure of CYP2C8 and extrahepatic distribution of the human CYP2Cs. J Biochem Mol Toxicol 1999;13:289–95.10.1002/(SICI)1099-0461(1999)13:6<289::AID-JBT1>3.0.CO;2-NSearch in Google Scholar

5. Hirota T, Eguchi S, Ieiri I. Impact of genetic polymorphisms in CYP2C9 and CYP2C19 on the pharmacokinetics of clinically used drugs. Drug Metab Pharmacokinet 2013;28:28–37.10.2133/dmpk.DMPK-12-RV-085Search in Google Scholar

6. Daly AK, Day CP, Aithal GP. CYP2C9 polymorphism and warfarin dose requirements. Br J Clin Pharmacol 2002;53:408–9.10.1046/j.1365-2125.2002.01572_6.xSearch in Google Scholar

7. van der Weide J, Steijns LS, van Weelden MJ, de Haan K. The effect of genetic polymorphism of cytochrome P450 CYP2C9 on phenytoin dose requirement. Pharmacogenetics 2001;11:287–91.10.1097/00008571-200106000-00002Search in Google Scholar

8. Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998;45:525–38.10.1046/j.1365-2125.1998.00721.xSearch in Google Scholar

9. Banu H, Renuka N, Vasanthakumar G. Reduced catalytic activity of human CYP2C9 natural alleles for gliclazide: molecular dynamics simulation and docking studies. Biochimie 2011;93:1028–36.10.1016/j.biochi.2011.02.008Search in Google Scholar

10. Sandberg M, Johansson I, Christensen M, Rane A, Eliasson E. The impact of CYP2C9 genetics and oral contraceptives on cytochrome P450 2C9 phenotype. Drug Metab Dispos 2004;32:484–9.10.1124/dmd.32.5.484Search in Google Scholar

11. Morin S, Loriot MA, Poirier JM, Tenneze L, Beaune PH, Funck-Brentano C, et al. Is diclofenac a valuable CYP2C9 probe in humans? Eur J Clin Pharmacol 2001;56:793–7.10.1007/s002280000240Search in Google Scholar PubMed

12. Rodrigues AD. Impact of CYP2C9 genotype on pharmacokinetics: are all cyclooxygenase inhibitors the same? Drug Metab Dispos 2005;33:1567–75.10.1124/dmd.105.006452Search in Google Scholar PubMed

13. Kumar V, Brundage RC, Oetting WS, Leppik IE, Tracy TS. Differential genotype dependent inhibition of CYP2C9 in humans. Drug Metab Dispos 2008;36:1242–8.10.1124/dmd.108.020396Search in Google Scholar PubMed PubMed Central

14. Bourrie M, Meunier V, Berger Y, Fabre G. Cytochrome P450 isoform inhibitors as a tool for the investigation of metabolic reactions catalyzed by human liver microsomes. J Pharmacol Exp Ther 1996;277:321–32.Search in Google Scholar

15. Kumar V, Locuson CW, Sham YY, Tracy TS. Amiodarone analog-dependent effects on CYP2C9-mediated metabolism and kinetic profiles. Drug Metab Dispos 2006;34:1688–96.10.1124/dmd.106.010678Search in Google Scholar PubMed

16. Cheetham TC, Levy G, Niu F, Bixler F. Gastrointestinal safety of nonsteroidal antiinflammatory drugs and selective cyclooxygenase-2 inhibitors in patients on warfarin. Ann Pharmacother 2009;43:1765–73.10.1345/aph.1M284Search in Google Scholar PubMed

17. Scott SA, Edelmann L, Kornreich R, Erazo M, Desnick RJ. CYP2C9, CYP2C19 and CYP2D6 allele frequencies in the Ashkenazi Jewish population. Pharmacogenomics 2007;8:721–30.10.2217/14622416.8.7.721Search in Google Scholar PubMed

18. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 2005;106:2329–33.10.1182/blood-2005-03-1108Search in Google Scholar PubMed

19. Dai DP, Wang SH, Geng PW, Hu GX, Cai JP. In vitro assessment of 36 CYP2C9 allelic isoforms found in the Chinese population on the metabolism of glimepiride. Basic Clin Pharmacol Toxicol 2013;114:305–10.10.1111/bcpt.12159Search in Google Scholar PubMed

20. Niinuma Y, Saito T, Takahashi M, Tsukada C, Ito M, Hirasawa N, et al. Functional characterization of 32 CYP2C9 allelic variants. Pharmacogenomics J 2013;14:107–14.10.1038/tpj.2013.22Search in Google Scholar PubMed

21. Hiratsuka M. In vitro assessment of the allelic variants of cytochrome P450. Drug Metab Pharmacokinet 2012;27:68–84.10.2133/dmpk.DMPK-11-RV-090Search in Google Scholar PubMed

22. DeLozier TC, Lee SC, Coulter SJ, Goh BC, Goldstein JA. Functional characterization of novel allelic variants of CYP2C9 recently discovered in southeast Asians. J Pharmacol Exp Ther 2005;315:1085–90.10.1124/jpet.105.091181Search in Google Scholar PubMed

23. Yasar U, Tybring G, Hidestrand M, Oscarson M, Ingelman-Sundberg M, Dahl ML, et al. Role of CYP2C9 polymorphism in losartan oxidation. Drug Metab Dispos 2001;29:1051–6.Search in Google Scholar

24. Kim SJ, Lee S, Park C, Seo JS, Kim JI, Yu HG. Targeted resequencing of candidate genes reveals novel variants associated with severe Behcet’s uveitis. Exp Mol Med 2013;45:e49.10.1038/emm.2013.101Search in Google Scholar PubMed PubMed Central

25. Minami SB, Mutai H, Nakano A, Arimoto Y, Taiji H, Morimoto N, et al. GJB2-associated hearing loss undetected by hearing screening of newborns. Gene 2013;532:41–5.10.1016/j.gene.2013.08.094Search in Google Scholar PubMed

26. Yasar U, Forslund-Bergengren C, Tybring G, Dorado P, Llerena A, Sjoqvist F, et al. Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype. Clin Pharmacol Ther 2002;71:89–98.10.1067/mcp.2002.121216Search in Google Scholar PubMed

27. Imai J, Ieiri I, Mamiya K, Miyahara S, Furuumi H, Nanba E, et al. Polymorphism of the cytochrome P450 (CYP) 2C9 gene in Japanese epileptic patients: genetic analysis of the CYP2C9 locus. Pharmacogenetics 2000;10:85–9.10.1097/00008571-200002000-00011Search in Google Scholar PubMed

28. Dickmann LJ, Rettie AE, Kneller MB, Kim RB, Wood AJ, Stein CM, et al. Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African Americans. Mol Pharmacol 2001;60:382–7.10.1124/mol.60.2.382Search in Google Scholar PubMed

29. Liu Y, Jeong H, Takahashi H, Drozda K, Patel SR, Shapiro NL, et al. Decreased warfarin clearance associated with the CYP2C9 R150H (*8) polymorphism. Clin Pharmacol Ther 2012;91:660–5.10.1038/clpt.2011.269Search in Google Scholar PubMed PubMed Central

30. Zi J, Liu D, Ma P, Huang H, Zhu J, Wei D, et al. Effects of CYP2C9*3 and CYP2C9*13 on diclofenac metabolism and inhibition-based drug-drug Interactions. Drug Metab Pharmacokinet 2010;25:343–50.10.2133/dmpk.DMPK-10-RG-009Search in Google Scholar PubMed

31. Zhao F, Loke C, Rankin SC, Guo JY, Lee HS, Wu TS, et al. Novel CYP2C9 genetic variants in Asian subjects and their influence on maintenance warfarin dose. Clin Pharmacol Ther 2004;76:210–9.10.1016/j.clpt.2004.05.005Search in Google Scholar PubMed

32. Veenstra DL, Blough DK, Higashi MK, Farin FM, Srinouanprachan S, Rieder MJ, et al. CYP2C9 haplotype structure in European American warfarin patients and association with clinical outcomes. Clin Pharmacol Ther 2005;77:353–64.10.1016/j.clpt.2005.01.019Search in Google Scholar PubMed

33. Maekawa K, Fukushima-Uesaka H, Tohkin M, Hasegawa R, Kajio H, Kuzuya N, et al. Four novel defective alleles and comprehensive haplotype analysis of CYP2C9 in Japanese. Pharmacogenet Genomics 2006;16:497–514.10.1097/01.fpc.0000215069.14095.c6Search in Google Scholar

34. Daily EB, Aquilante CL. Cytochrome P450 2C8 pharmacogenetics: a review of clinical studies. Pharmacogenomics 2009;10:1489–510.10.2217/pgs.09.82Search in Google Scholar

35. Speed WC, Kang SP, Tuck DP, Harris LN, Kidd KK. Global variation in CYP2C8-CYP2C9 functional haplotypes. Pharmacogenomics J 2009;9:283–90.10.1038/tpj.2009.10Search in Google Scholar

36. Tomalik-Scharte D, Fuhr U, Hellmich M, Frank D, Doroshyenko O, Jetter A, et al. Effect of the CYP2C8 genotype on the pharmacokinetics and pharmacodynamics of repaglinide. Drug Metab Dispos 2011;39:927–32.10.1124/dmd.110.036921Search in Google Scholar

37. Wei L, Locuson CW, Tracy TS. Polymorphic variants of CYP2C9: mechanisms involved in reduced catalytic activity. Mol Pharmacol 2007;72:1280–8.10.1124/mol.107.036178Search in Google Scholar

38. Vianna-Jorge R, Perini JA, Rondinelli E, Suarez-Kurtz G. CYP2C9 genotypes and the pharmacokinetics of tenoxicam in Brazilians. Clin Pharmacol Ther 2004;76:18–26.10.1016/j.clpt.2004.03.002Search in Google Scholar

39. Aynacioglu AS, Brockmoller J, Bauer S, Sachse C, Guzelbey P, Ongen Z, et al. Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin. Br J Clin Pharmacol 1999;48:409–15.10.1046/j.1365-2125.1999.00012.xSearch in Google Scholar

40. Scordo MG, Pengo V, Spina E, Dahl ML, Gusella M, Padrini R. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 2002;72:702–10.10.1067/mcp.2002.129321Search in Google Scholar

41. Sachse-Seeboth C, Pfeil J, Sehrt D, Meineke I, Tzvetkov M, Bruns E, et al. Interindividual variation in the pharmacokinetics of Delta9-tetrahydrocannabinol as related to genetic polymorphisms in CYP2C9. Clin Pharmacol Ther 2009;85:273–6.10.1038/clpt.2008.213Search in Google Scholar

42. Kirchheiner J, Kudlicz D, Meisel C, Bauer S, Meineke I, Roots I, et al. Influence of CYP2C9 polymorphisms on the pharmacokinetics and cholesterol-lowering activity of (-)-3S,5R-fluvastatin and (+)-3R,5S-fluvastatin in healthy volunteers. Clin Pharmacol Ther 2003;74:186–94.10.1016/S0009-9236(03)00121-8Search in Google Scholar

43. Niemi M, Cascorbi I, Timm R, Kroemer HK, Neuvonen PJ, Kivisto KT. Glyburide and glimepiride pharmacokinetics in subjects with different CYP2C9 genotypes. Clin Pharmacol Ther 2002;72:326–32.10.1067/mcp.2002.127495Search in Google Scholar PubMed

44. Sandberg M, Yasar U, Stromberg P, Hoog JO, Eliasson E. Oxidation of celecoxib by polymorphic cytochrome P450 2C9 and alcohol dehydrogenase. Br J Clin Pharmacol 2002;54: 423–9.10.1046/j.1365-2125.2002.01660.xSearch in Google Scholar PubMed PubMed Central

45. Bae JW, Kim HK, Kim JH, Yang SI, Kim MJ, Jang CG, et al. Allele and genotype frequencies of CYP2C9 in a Korean population. Br J Clin Pharmacol 2005;60:418–22.10.1111/j.1365-2125.2005.02448.xSearch in Google Scholar PubMed PubMed Central

46. Kidd RS, Curry TB, Gallagher S, Edeki T, Blaisdell J, Goldstein JA. Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin. Pharmacogenetics 2001;11:803–8.10.1097/00008571-200112000-00008Search in Google Scholar PubMed

47. Blaisdell J, Jorge-Nebert LF, Coulter S, Ferguson SS, Lee SJ, Chanas B, et al. Discovery of new potentially defective alleles of human CYP2C9. Pharmacogenetics 2004;14:527–37.10.1097/01.fpc.0000114759.08559.51Search in Google Scholar PubMed

48. Markova SM, De Marco T, Bendjilali N, Kobashigawa EA, Mefford J, Sodhi J, et al. Association of CYP2C9*2 with Bosentan-induced liver injury. Clin Pharmacol Ther 2013;94:678–86.10.1038/clpt.2013.143Search in Google Scholar PubMed PubMed Central

49. Takahashi H, Ieiri I, Wilkinson GR, Mayo G, Kashima T, Kimura S, et al. 5’-Flanking region polymorphisms of CYP2C9 and their relationship to S-warfarin metabolism in white and Japanese patients. Blood 2004;103:3055–7.10.1182/blood-2003-07-2521Search in Google Scholar PubMed

50. Kramer MA, Rettie AE, Rieder MJ, Cabacungan ET, Hines RN. Novel CYP2C9 promoter variants and assessment of their impact on gene expression. Mol Pharmacol 2008;73:1751–60.10.1124/mol.107.044149Search in Google Scholar PubMed PubMed Central

51. Cavallari LH, Vaynshteyn D, Freeman KM, Wang D, Perera MA, Takahashi H, et al. CYP2C9 promoter region single-nucleotide polymorphisms linked to the R150H polymorphism are functional suggesting their role in CYP2C9*8-mediated effects. Pharmacogenet Genomics 2013;23:228–31.10.1097/FPC.0b013e32835e95c7Search in Google Scholar PubMed PubMed Central

52. Scordo MG, Caputi AP, D’Arrigo C, Fava G, Spina E. Allele and genotype frequencies of CYP2C9, CYP2C19 and CYP2D6 in an Italian population. Pharmacol Res 2004;50:195–200.10.1016/j.phrs.2004.01.004Search in Google Scholar PubMed

53. Dorado P, Berecz R, Norberto MJ, Yasar U, Dahl ML, Llerena A. CYP2C9 genotypes and diclofenac metabolism in Spanish healthy volunteers. Eur J Clin Pharmacol 2003;59:221–5.10.1007/s00228-003-0588-0Search in Google Scholar PubMed

54. Allabi AC, Gala JL, Desager JP, Heusterspreute M, Horsmans Y. Genetic polymorphisms of CYP2C9 and CYP2C19 in the Beninese and Belgian populations. Br J Clin Pharmacol 2003;56:653–7.10.1046/j.1365-2125.2003.01937.xSearch in Google Scholar PubMed PubMed Central

55. Stubbins MJ, Harries LW, Smith G, Tarbit MH, Wolf CR. Genetic analysis of the human cytochrome P450 CYP2C9 locus. Pharmacogenetics 1996;6:429–39.10.1097/00008571-199610000-00007Search in Google Scholar PubMed

56. Yasar U, Eliasson E, Dahl ML, Johansson I, Ingelman-Sundberg M, Sjoqvist F. Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population. Biochem Biophys Res Commun 1999;254:628–31.10.1006/bbrc.1998.9992Search in Google Scholar PubMed

57. Hamdy SI, Hiratsuka M, Narahara K, El-Enany M, Moursi N, Ahmed MS, et al. Allele and genotype frequencies of polymorphic cytochromes P450 (CYP2C9, CYP2C19, CYP2E1) and dihydropyrimidine dehydrogenase (DPYD) in the Egyptian population. Br J Clin Pharmacol 2002;53:596–603.10.1046/j.1365-2125.2002.01604.xSearch in Google Scholar PubMed PubMed Central

58. Yousef AM, Bulatova NR, Newman W, Hakooz N, Ismail S, Qusa H, et al. Allele and genotype frequencies of the polymorphic cytochrome P450 genes (CYP1A1, CYP3A4, CYP3A5, CYP2C9 and CYP2C19) in the Jordanian population. Mol Biol Rep 2012;39:9423–33.10.1007/s11033-012-1807-5Search in Google Scholar PubMed

59. Peyvandi F, Spreafico M, Karimi M, Zeinali S, Mannucci PM, Bianchi Bonomi A. Allele frequency of CYP2C9 gene polymorphisms in Iran. Thromb Haemost 2002;88:874–5.10.1055/s-0037-1613318Search in Google Scholar

60. Adithan C, Gerard N, Vasu S, Balakrishnan R, Shashindran CH, Krishnamoorthy R. Allele and genotype frequency of CYP2C9 in Tamilnadu population. Eur J Clin Pharmacol 2003;59:707–9.10.1007/s00228-003-0666-3Search in Google Scholar PubMed

61. Wang SL, Huang J, Lai MD, Tsai JJ. Detection of CYP2C9 polymorphism based on the polymerase chain reaction in Chinese. Pharmacogenetics 1995;5:37–42.10.1097/00008571-199502000-00004Search in Google Scholar PubMed

62. Gaedigk A, Casley WL, Tyndale RF, Sellers EM, Jurima-Romet M, Leeder JS. Cytochrome P4502C9 (CYP2C9) allele frequencies in Canadian Native Indian and Inuit populations. Can J Physiol Pharmacol 2001;79:841–7.10.1139/y01-065Search in Google Scholar

63. Yoon YR, Shon JH, Kim MK, Lim YC, Lee HR, Park JY, et al. Frequency of cytochrome P450 2C9 mutant alleles in a Korean population. Br J Clin Pharmacol 2001;51:277–80.10.1046/j.1365-2125.2001.00340.xSearch in Google Scholar PubMed PubMed Central

64. Sullivan-Klose TH, Ghanayem BI, Bell DA, Zhang ZY, Kaminsky LS, Shenfield GM, et al. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 1996;6:341–9.10.1097/00008571-199608000-00007Search in Google Scholar PubMed

65. Ngow HA, Wan Khairina WM, Teh LK, Lee WL, Harun R, Ismail R, et al. CYP2C9 polymorphism: prevalence in healthy and warfarin-treated Malay and Chinese in Malaysia. Singapore Med J 2009;50:490–3.Search in Google Scholar

66. Rusdiana T, Araki T, Nakamura T, Subarnas A, Yamamoto K. Responsiveness to low-dose warfarin associated with genetic variants of VKORC1, CYP2C9, CYP2C19, and CYP4F2 in an Indonesian population. Eur J Clin Pharmacol 2013;69:395–405.10.1007/s00228-012-1356-9Search in Google Scholar PubMed

67. Scordo MG, Aklillu E, Yasar U, Dahl ML, Spina E, Ingelman-Sundberg M. Genetic polymorphism of cytochrome P450 2C9 in a Caucasian and a black African population. Br J Clin Pharmacol 2001;52:447–50.10.1046/j.0306-5251.2001.01460.xSearch in Google Scholar PubMed PubMed Central

68. Takahashi H, Wilkinson GR, Nutescu EA, Morita T, Ritchie MD, Scordo MG, et al. Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African-Americans. Pharmacogenet Genomics 2006;16:101–10.10.1097/01.fpc.0000184955.08453.a8Search in Google Scholar PubMed

69. King BP, Khan TI, Aithal GP, Kamali F, Daly AK. Upstream and coding region CYP2C9 polymorphisms: correlation with warfarin dose and metabolism. Pharmacogenetics 2004;14:813–22.10.1097/00008571-200412000-00004Search in Google Scholar PubMed

70. Herman D, Peternel P, Stegnar M, Breskvar K, Dolzan V. A novel sequence variant in exon 7 of CYP2C9 gene (CYP2C9*24) in a patient on warfarin therapy. Thromb Haemost 2006;95:192–4.10.1055/s-0037-1612583Search in Google Scholar

71. Matimba A, Del-Favero J, Van Broeckhoven C, Masimirembwa C. Novel variants of major drug-metabolising enzyme genes in diverse African populations and their predicted functional effects. Hum Genomics 2009;3:169–90.10.1186/1479-7364-3-2-169Search in Google Scholar PubMed PubMed Central

72. Mikheeva Iu A, Kropacheva ES, Ignat’ev IV, Bulytova Iu M, Ramenskaia GV, Sychev DA, et al. Cytochrome P4502C9(CYP2C9) gene polymorphism and safety of therapy with warfarin. Kardiologiia 2008;48:52–7.Search in Google Scholar

73. Ramasamy K, Narayan SK, Chanolean S, Chandrasekaran A. Severe phenytoin toxicity in a CYP2C9*3*3 homozygous mutant from India. Neurol India 2007;55:408–9.10.4103/0028-3886.33300Search in Google Scholar PubMed

74. Gao L, He L, Luo J, Xu B, Yang J, Zhang YX, et al. Extremely low warfarin dose in patients with genotypes of CYP2C9*3/*3 and VKORC1-1639A/A. Chin Med J (Engl) 2011;124:2767–70.Search in Google Scholar

75. Tatarunas V, Lesauskaite V, Veikutiene A, Grybauskas P, Jakuska P, Jankauskiene L, et al. The effect of CYP2C9, VKORC1 and CYP4F2 polymorphism and of clinical factors on warfarin dosage during initiation and long-term treatment after heart valve surgery. J Thromb Thrombolysis 2013;37: 177–85.10.1007/s11239-013-0940-xSearch in Google Scholar PubMed

76. Lindh JD, Holm L, Andersson ML, Rane A. Influence of CYP2C9 genotype on warfarin dose requirements – a systematic review and meta-analysis. Eur J Clin Pharmacol 2009;65:365–75.10.1007/s00228-008-0584-5Search in Google Scholar PubMed

77. Shaw K, Amstutz U, Hildebrand C, Rassekh SR, Hosking M, Neville K, et al. VKORC1 and CYP2C9 genotypes are predictors of warfarin-related outcomes in children. Pediatr Blood Cancer 2014;61:1055–62.10.1002/pbc.24932Search in Google Scholar PubMed

78. Johnson JA, Gong L, Whirl-Carrillo M, Gage BF, Scott SA, Stein CM, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther 2011;90:625–9.10.1038/clpt.2011.185Search in Google Scholar PubMed PubMed Central

79. De T, Christopher R, Nagaraja D. Influence of CYP2C9 polymorphism and phenytoin co-administration on acenocoumarol dose in patients with cerebral venous thrombosis. Thromb Res 2014;133:729–35.10.1016/j.thromres.2014.01.037Search in Google Scholar PubMed

80. Kirchheiner J, Roots I, Goldammer M, Rosenkranz B, Brockmoller J. Effect of genetic polymorphisms in cytochrome P450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs: clinical relevance. Clin Pharmacokinet 2005;44:1209–25.10.2165/00003088-200544120-00002Search in Google Scholar PubMed

81. Jetter A, Kinzig-Schippers M, Skott A, Lazar A, Tomalik-Scharte D, Kirchheiner J, et al. Cytochrome P450 2C9 phenotyping using low-dose tolbutamide. Eur J Clin Pharmacol 2004;60:165–71.10.1007/s00228-004-0754-zSearch in Google Scholar PubMed

82. Kirchheiner J, Meineke I, Muller G, Bauer S, Rohde W, Meisel C, et al. Influence of CYP2C9 and CYP2D6 polymorphisms on the pharmacokinetics of nateglinide in genotyped healthy volunteers. Clin Pharmacokinet 2004;43:267–78.10.2165/00003088-200443040-00005Search in Google Scholar PubMed

83. Ragia G, Tavridou A, Elens L, Van Schaik RH, Manolopoulos VG. CYP2C9*2 allele increases risk for hypoglycemia in POR*1/*1 type 2 diabetic patients treated with sulfonylureas. Exp Clin Endocrinol Diabetes 2014;122:60–3.10.1055/s-0033-1361097Search in Google Scholar PubMed

84. Agundez JA, Garcia-Martin E, Martinez C. Genetically based impairment in CYP2C8- and CYP2C9-dependent NSAID metabolism as a risk factor for gastrointestinal bleeding: is a combination of pharmacogenomics and metabolomics required to improve personalized medicine? Expert Opin Drug Metab Toxicol 2009;5:607–20.10.1517/17425250902970998Search in Google Scholar PubMed

85. Blanco G, Martinez C, Ladero JM, Garcia-Martin E, Taxonera C, Gamito FG, et al. Interaction of CYP2C8 and CYP2C9 genotypes modifies the risk for nonsteroidal anti-inflammatory drugs-related acute gastrointestinal bleeding. Pharmacogenet Genomics 2008;18:37–43.10.1097/FPC.0b013e3282f305a9Search in Google Scholar PubMed

86. Lee HI, Bae JW, Choi CI, Lee YJ, Byeon JY, Jang CG, et al. Strongly increased exposure of meloxicam in CYP2C9*3/*3 individuals. Pharmacogenet Genomics 2014;24:113–7.10.1097/FPC.0000000000000025Search in Google Scholar PubMed

87. Martinez C, Garcia-Martin E, Ladero JM, Sastre J, Garcia-Gamito F, Diaz-Rubio M, et al. Association of CYP2C9 genotypes leading to high enzyme activity and colorectal cancer risk. Carcinogenesis 2001;22:1323–6.10.1093/carcin/22.8.1323Search in Google Scholar PubMed

88. Cleary SP, Cotterchio M, Shi E, Gallinger S, Harper P. Cigarette smoking, genetic variants in carcinogen-metabolizing enzymes, and colorectal cancer risk. Am J Epidemiol 2010;172:1000–14.10.1093/aje/kwq245Search in Google Scholar PubMed PubMed Central

89. Funk M, Endler G, Freitag R, Wojta J, Huber K, Mannhalter C, et al. CYP2C9*2 and CYP2C9*3 alleles confer a lower risk for myocardial infarction. Clin Chem 2004;50:2395–8.10.1373/clinchem.2004.038034Search in Google Scholar PubMed

90. Visser LE, van Schaik RH, Jan Danser AH, Hofman A, Witteman JC, van Duijn CM, et al. The risk of myocardial infarction in patients with reduced activity of cytochrome P450 2C9. Pharmacogenet Genomics 2007;17:473–9.10.1097/01.fpc.0000236335.57046.c8Search in Google Scholar PubMed

91. Llerena A, Berecz R, Dorado P, Gonzalez AP, Penas LE, De La Rubia A. CYP2C9 gene and susceptibility to major depressive disorder. Pharmacogenomics J 2003;3:300–2.10.1038/sj.tpj.6500197Search in Google Scholar PubMed

Received: 2014-1-3
Accepted: 2014-4-4
Published Online: 2014-5-12
Published in Print: 2014-12-1

©2014 by De Gruyter

Scroll Up Arrow