Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (A) December 9, 2020

Automatisierte Ungleichheit

Ethik der Künstlichen Intelligenz in der biopolitischen Wende des Digitalen Kapitalismus

  • Rainer Mühlhoff EMAIL logo


This paper sets out the notion of a current “biopolitical turn of digital capitalism” resulting from the increasing deployment of AI and data analytics technologies in the public sector. With applications of AI-based automated decisions currently shifting from the domain of business to customer (B2C) relations to government to citizen (G2C) relations, a new form of governance arises that operates through “algorithmic social selection”. Moreover, the paper describes how the ethics of AI is at an impasse concerning these larger societal and socioeconomic trends and calls for an ethics of AI that includes, and acts in close alliance with, social and political philosophy. As an example, the problem of Predictive Analytics is debated to make the point that data-driven AI (Machine Learning) is currently one of the main ethical challenges in the ethics of AI.


Anderson, M., u. Anderson, S. L. (Hg.) (2011), Machine ethics, New York.10.1017/CBO9780511978036Search in Google Scholar

Baker, R. S., u. Inventado, P. S. (2014), Educational Data Mining and Learning Analytics, in: Larusson, J. A., u. White, B. (Hg.), Learning Analytics: From Research to Practice, New York, 61–75.10.1007/978-1-4614-3305-7_4Search in Google Scholar

Bogen, M. (2019), All the Ways Hiring Algorithms Can Introduce Bias, in: Harvard Business Review, URL: in Google Scholar

Bond, R. M., Fariss, C. J., Jones, J. J., Kramer, A. D. I., Marlow, C., Settle, J. E., u. Fowler, J. H. (2012), A 61-million-person experiment in social influence and political mobilization, in: Nature 489.7415, 295–298.10.1038/nature11421Search in Google Scholar

Bostrom, N., u. Yudkowsky, E. (2014), The ethics of artificial intelligence, in: Frankish, K., u. Ramsey, W. M. (Hg.), The Cambridge Handbook of Artificial Intelligence, Cambridge, 316–334.10.1017/CBO9781139046855.020Search in Google Scholar

Breljak, A., u. Mühlhoff, R. (2019), Was ist Sozialtheorie der Digitalen Gesellschaft? – Einleitung, in: Slaby, J. (Hg.), Affekt Macht Netz: Auf dem Weg zu einer Sozialtheorie der digitalen Gesellschaft, Bielefeld, 7–34.10.14361/9783839444399-001Search in Google Scholar

Bröckling, U., Krasmann, S., u. Lemke, T. (Hg.) (2000), Gouvernementalität der Gegenwart: Studien zur Ökonomisierung des Sozialen, Frankfurt am Main.Search in Google Scholar

Crawford, K., u. Schultz, J. (2014), Big Data and Due Process: Toward a Framework to Redress Predictive Privacy Harms, in: Boston College Law Review 55.1, 93–128.Search in Google Scholar

Daum, T. (2019), Die Künstliche Intelligenz des Kapitals, Hamburg.Search in Google Scholar

Dignum, V. (2019), Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way, Cham, ZG.10.1007/978-3-030-30371-6Search in Google Scholar

Duhigg, C. (2012), How Companies Learn Your Secrets, in: The New York Times, URL: (27.5.2020).10.7312/star16075-025Search in Google Scholar

Eslami, M., Rickman, A., Vaccaro, K., Aleyasen, A., Vuong, A., Karahalios, K., Hamilton, K., u. Sandvig, C. (2015), „I always assumed that I wasn’t really that close to [her]“ Reasoning about Invisible Algorithms in News Feeds, in: Proceedings of the 33rd annual ACM conference on human factors in computing systems, 153–162.10.1145/2702123.2702556Search in Google Scholar

Etzioni, A., u. Etzioni, O. (2017), Incorporating Ethics into Artificial Intelligence, in: The Journal of Ethics 21.4, 403–418.10.1007/s10892-017-9252-2Search in Google Scholar

Eubanks, V. (2017), Automating inequality: how high-tech tools profile, police, and punish the poor, New York.Search in Google Scholar

Foucault, M. (2006a), Sicherheit, Territorium, Bevölkerung: Geschichte der Gouvernementalität I, Frankfurt am Main.Search in Google Scholar

Foucault, M. (2006b), Die Geburt der Biopolitik: Geschichte der Gouvernementalität II, Frankfurt am Main.Search in Google Scholar

Foucault, M. (2007), Was ist Aufklärung? [1984], in: Ästhetik der Existenz: Schriften zur Lebenskunst, Frankfurt am Main, 171–190.Search in Google Scholar

Friedman, B., u. Nissenbaum, H. (1996), Bias in computer systems, in: ACM Transactions on Information Systems 14.3, 330–347.10.4324/9781315259697-23Search in Google Scholar

Goggin, B. (2019), Inside Facebook’s suicide algorithm: Here’s how the company uses artificial intelligence to predict your mental state from your posts, in: Business Insider, URL: (27.5.2020).Search in Google Scholar

González, R. J. (2017), Hacking the citizenry?: Personality profiling, „big data“ and the election of Donald Trump, in: Anthropology Today 33.3, 9–12.10.1111/1467-8322.12348Search in Google Scholar

Grindrod, P. (2014), Mathematical underpinnings of analytics: theory and applications, Oxford.10.1093/acprof:oso/9780198725091.001.0001Search in Google Scholar

Grunwald, A. (Hg.) (2013), Handbuch Technikethik, Stuttgart.10.1007/978-3-476-05333-6Search in Google Scholar

Hagendorff, T. (2020), The Ethics of AI Ethics – An Evaluation of Guidelines, in: Minds and Machines 30, 99–120.10.1007/s11023-020-09517-8Search in Google Scholar

Hao, K. (2019), AI is sending people to jail – and getting it wrong, in: MIT Technology Review, URL: in Google Scholar

Hildebrandt, M. (2011), Who Needs Stories if You Can Get the Data? ISPs in the Era of Big Number Crunching, in: Philosophy & Technology 24.4, 371–390.10.1007/s13347-011-0041-8Search in Google Scholar

Horkheimer, M. (1992), Traditionelle und kritische Theorie [1937], in: Traditionelle und kritische Theorie: fünf Aufsätze, Frankfurt am Main, 205–259.Search in Google Scholar

Hurley, M., u. Adebayo, J. (2017), Credit scoring in the era of big data, in: Yale Journal of Law and Technology 18.1, 5.Search in Google Scholar

Jobin, A., Ienca, M., u. Vayena, E. (2019), The global landscape of AI ethics guidelines, in: Nature Machine Intelligence 1.9, 389–399.10.1038/s42256-019-0088-2Search in Google Scholar

Kaerlein, T. (2018), Smartphones als digitale Nahkörpertechnologien: Zur Kybernetisierung des Alltags, Bielefeld.10.1515/9783839442722Search in Google Scholar

Kosinski, M., Stillwell, D., u. Graepel, T. (2013), Private traits and attributes are predictable from digital records of human behavior, in: Proceedings of the National Academy of Sciences 110.15, 5802–5805.10.1073/pnas.1218772110Search in Google Scholar

Kramer, A. D. I., Guillory, J. E., u. Hancock, J. T. (2014), Experimental evidence of massive-scale emotional contagion through social networks, in: Proceedings of the National Academy of Sciences 111.24, 8788–8790.10.1073/pnas.1320040111Search in Google Scholar

Lippert, J. (2014), ZestFinance issues small, high-rate loans, uses big data to weed out deadbeats, in: Washington Post, URL: (27.5.2020)Search in Google Scholar

Matzner, T. (2019), Autonomy Trolleys und andere Probleme: Konfigurationen künstlicher Intelligenz in ethischen Debatten über selbstfahrende Kraftfahrzeuge, in: Zeitschrift für Medienwissenschaft 21.2, 46–55.10.14361/zfmw-2019-210107Search in Google Scholar

Matzner, T. (2016), Beyond data as representation: The performativity of Big Data in surveillance, in: Surveillance & Society 14.2, 197–210.10.24908/ss.v14i2.5831Search in Google Scholar

Merchant, R. M., Asch, D. A., Crutchley, P., Ungar, L. H., Guntuku, S. C., Eichstaedt, J. C., Hill, S., Padrez, K., Smith, R. J., u. Schwartz, H. A. (2019), in: Evaluating the predictability of medical conditions from social media posts, in: PLOS ONE 14.6, e0215476.10.1371/journal.pone.0215476Search in Google Scholar

Misselhorn, C. (2018), Grundfragen der Maschinenethik, 4. Aufl., Stuttgart.Search in Google Scholar

Mittelstadt, B. (2017), From Individual to Group Privacy in Big Data Analytics, in: Philosophy & Technology 30.4, 475–494.10.1007/s13347-017-0253-7Search in Google Scholar

Mittelstadt, B. (2019), Principles alone cannot guarantee ethical AI, in: Nature Machine Intelligence 1.11, 501–507.10.1038/s42256-019-0114-4Search in Google Scholar

Mittelstadt, B., Allo, P., Taddeo, M., Wachter, S., u. Floridi, L. (2016), The Ethics of Algorithms: Mapping the Debate, in: Big Data and Society in Google Scholar

Mühlhoff, R. (2018), Digitale Entmündigung und User Experience Design: Wie digitale Geräte uns nudgen, tracken und zur Unwissenheit erziehen, in: Leviathan – Journal of Social Sciences 46.4, 551–574.10.5771/0340-0425-2018-4-551Search in Google Scholar

Mühlhoff, R. (2019a), Human-Aided Artificial Intelligence: Or, How to Run Large Computations in Human Brains? Towards a Media Sociology of Machine Learning, in: New Media & Society OnlineFirst Nov. 2019.10.1177/1461444819885334Search in Google Scholar

Mühlhoff, R. (2019b), Big Data is Watching You. Digitale Entmündigung am Beispiel von Facebook und Google, in: Slaby, J. (Hg.), Affekt Macht Netz: Auf dem Weg zu einer Sozialtheorie der digitalen Gesellschaft, Bielefeld, 81–107.10.1515/9783839444399-004Search in Google Scholar

Noble, S. U. (2018), Algorithms of oppression: how search engines reinforce racism, New York.10.2307/j.ctt1pwt9w5Search in Google Scholar

O’Dwyer, R. (2018), Are You Creditworthy? The Algorithm Will Decide, in: Undark Magazine, URL: in Google Scholar

O’Neil, C. (2016), Weapons of math destruction: how big data increases inequality and threatens democracy, New York.Search in Google Scholar

Owen, R., Bessant, J. R., u. Heintz, M. (Hg.) (2013), Responsible innovation, Chichester.10.1002/9781118551424Search in Google Scholar

Persily, N. (2017), Can Democracy Survive the Internet?, in: Journal of Democracy 28.2, 63–76.10.1353/jod.2017.0025Search in Google Scholar

Prainsack, B. (2020), The value of healthcare data: to nudge, or not?, in: Policy Studies 41.5, 547–562.10.1080/01442872.2020.1723517Search in Google Scholar

Saslow, K., u. Lorenz, P. (2019), Artificial Intelligence Needs Human Rights, Berlin.Search in Google Scholar

Staab, P. (2019), Digitaler Kapitalismus: Markt und Herrschaft in der Ökonomie der Unknappheit, Berlin.Search in Google Scholar

Tufekci, Z. (2015), Algorithmic harms beyond Facebook and Google: Emergent challenges of computational agency, in: Colorado Technology Law Journal 13, 203.Search in Google Scholar

Tufekci, Z. (2014), Engineering the public: Big data, surveillance and computational politics, in: First Monday 19.7, DOI: doi: (8.10.2020).10.5210/fm.v19i7.4901Search in Google Scholar

Véliz, C. (2019), Three things digital ethics can learn from medical ethics, in: Nature Electronics 2.8, 316–318.10.1038/s41928-019-0294-2Search in Google Scholar

Wachter, S. (2018), Normative challenges of identification in the Internet of Things: Privacy, profiling, discrimination, and the GDPR, in: Computer Law & Security Review 34.3, 436–449.10.1016/j.clsr.2018.02.002Search in Google Scholar

Wagner, B. (2018), Ethics as an escape from regulation. From „ethics-washing“ to ethicsshopping?, in: Bayamlioğlu, E., Baraliuc, I., Janssens, L., et al. (Hg.), Being Profiled: Cogitas Ergo Sum. 10 Years of ‘Profiling the European Citizen‘, Amsterdam, 84–88, DOI: in Google Scholar

Weiser, M. (1991), The computer for the 21st century, in: ACM SIGMOBILE mobile computing and communications review 3, 3–11.10.1016/B978-0-08-051574-8.50097-2Search in Google Scholar

Wong, P.-H., u. Simon, J. (2020), Thinking About ‚Ethics‘ in the Ethics of AI, in: Idees 48, URL: (8.10.2020).Search in Google Scholar

Zittrain, J. (2013), Engineering an election, in: Harvard Law Review Forum 127, 335.Search in Google Scholar

Zwitter, A. (2014), Big Data ethics, in: Big Data & Society 1.2, 205395171455925.10.1177/2053951714559253Search in Google Scholar

Published Online: 2020-12-09
Published in Print: 2020-12-16

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.12.2023 from
Scroll to top button