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Abstract: Photovoltaic (PV) systems have paved their way
into general households due to their high efficiency, low
deployment cost and huge power savings. These advan-
tages combined with Government incentives further assist
inwide-scale adoptability of the solar powered systems. PV
systems generate direct current (DC) outputs, which needs
to be converted into alternating current (AC) via inverters.
The efficiency of inverter design decides the overall effi-
ciency of the PV system, which allows effective utilization
of the solar power for feeding to grid or for local usage. In
order to design effective inverter models, a large number of
electrical configurations are designed by researchers over
the years. These include, stand-alone inverters, grid-tie
inverters, battery backup inverters and hybrid inverters,
each of which are further divided into multiple sub-
categories. Each of these sub-categories have a different
application, for instance, string-converters are used for
moderate power applications up-to 150k W, while central
converters are used for high power applications above
80k W, etc. Apart from power capabilities, these designs
vary in terms of efficiency of conversion, usability, cost,
etc. Due to so many parametric variations, effective selec-
tion of these converters for a given PV application becomes
ambiguous. In order to reduce this ambiguity, the under-
lying text statistically evaluates performance of some of the
most efficient PV converter models, and compares them on
the basis of power capabilities, accuracy of conversion,
converter used, control model used, etc. This review will
assist researchers and system designers to select the best

suitedmodels for their given applications, and thus reduce
the time needed for efficient PV inverter system design.
This text also recommends future research which can be
adopted for improving efficiency of these systems.

Keywords: capacity; conversion; efficiency; inverter; po-
wer; solar.

Introduction

Designing solar inverters for efficient conversion of gener-
ated DC power into usable AC power is amulti-domain task.
This task includes, sensing of current, voltage, driving the
sensed power, power-point-tracking, DC–DC conversion,
DC–AC inversion, grid protection, etc. In order to design an
efficient solar inverter, it is recommended that design of
these internal task modules should be done with high effi-
ciency. An example architecture that uses field program-
mable gate arrays (FPGAs) in order to perform these tasks
with high speed, low energy consumption and reduced
power loss can be observed from Figure 1, wherein different
sensing & conversion blocks are connected in tandem to
feed the generated power to grid.

The architecture initially senses data from different PV
panels, and provides it to a DC–DC converter. This con-
verter boosts power/voltage levels in order to match grid
feeding specifications. The obtained power is also given to
current & voltage sensors for efficient analysis and solar
panel control. This control is materialized using maximum
power point tracking algorithms that aim at modifying PV
characteristics for maximum power output. Components
like DC–DC controllers assist in performing this task via the
use of low-power drivers. The sensed power is then given to
a DC–AC conversion circuit, a.k.a., PV inverter, which
converts the voltage for feeding into the grid. The feeding
interface is coupled with a grid protection circuit, which
cuts off solar power to the remaining grid circuitry during
grid shut down periods.

A large number of algorithms are proposed in order
to design the PV inverter circuits, which vary in terms of
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efficiency of conversion, applicability, power requirements,
etc. The next section surveys different characteristics of
these algorithms in order to evaluate their applicability
for various electrical environments. This is followed by the
comparative statistical analysis of these systems, which will
assist researchers to identify the best possible inverter con-
figurations for their given PV system design. Finally, this
text concludes with some interesting observations about
these models and recommends methods to improve them.

Literature review

Machine learning is employed in order to improve the
performance of various signal processing applications.
Considering PV system design as such an application, the
work in (Khather and Ibrahim 2020) proposes the use of Bat

Algorithm (BA) for effective selection of Proportional–In-
tegral-Derivative (PID) gains. This is combinedwith Single-
ended primary inductance converter (SEPIC) which im-
proves stability of voltage conversion, in both step-up and
step-down modes. The circuit diagram for SEPIC converter
can be observed from Figure 2, wherein MOSFET (metal
oxide semiconductor field-effect transistor) is used for
controlling the output during turn ON and turn OFF modes
during conversion. The MOSFET operates on a duty cycle
(D), due to which output voltage of SEPIC can be controlled
using the entity given in equation (1),

Vout = Vin∗( D
1 − D

) (1)

where, Vout and Vin are the output and input voltages for
the SEPIC system. This duty cycle is controlled by the PID
controller which is optimized using BA optimization. This

Figure 1: PV power processing for DC to AC conversion and efficient grid feeding.

Figure 2: The SEPIC model for highly stable conversion (Khather and Ibrahim 2020).
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ensures a stable output voltage, even if there are changes
in the input voltage. Convergence delay of less than
0.1 s is obtained, which makes it suitable for real-time
applications.

Efficiency of the SEPIC model can be further improved
via the use of adaptive maximum power point tracking
(MPPT) algorithms. These algorithms allow the PV system
to tune their parameters for maximum output. An example
such an optimized controller can be observed from Njomo
et al. (2021), wherein Nonlinear Neuro-Adaptive Control is
used for optimizing the output of MPPT block. Due to use of
neural controller, pattern recognition capabilities of the
system are improved, which assists in effective selection of
MPPT parameters. This allows the system to obtain a power
efficiency of 97%, which is 1.7% higher when compared
with regular perturb and observe (P&O) system. It also
assists in reducing the mean squared error from 3.38 to
2.65, thereby improving output stability. But both P&O and
MPPT have their own advantages, and their combination
can further improve PV system performance. Such a hybrid
system that uses support vector machines (SVM) for
improving overall power efficiency of PV systems can be
observed from (Yan et al. 2019). Here, the SVM classifier
uses historical irradiance data in order to identify the
weather conditions, and based on these conditions, final
selection of P&O or MPPT models is done. It is observed
that SVM achieves an efficiency between 97.9 and 99.7%
depending upon weather conditions.

Fuzzy logic models aim at reducing the number of
quantization levels for input and output data, thereby
assisting in optimization of the overall decision making.
These fuzzy models can be used to improve the decision-
making process for MPPT and P&O controllers as observed
in Blange, Mahanta, and Gogoi (2016), wherein dc–dc buck
boost converter is used to improve PV conversion perfor-
mance. Due to the use of fuzzy control, overall efficiency of
conversion is improved by 5% when compared to a non-
fuzzy control system. In order to further improve the effi-
ciency of Boost converter, the SEPIC converters are used.
These converters when combined with improved dynamic
response for duty cycle control can be used for highly
efficient PV system design as observed from (Sakthivel
and Jayalakshmi 2020). Here a power efficiency of 90% is
achieved when PI (partial integral) systems are used to
control SEPIC’s duty cycle, which an efficiency of 53% is
obtainedwhen PID controllers are used. This efficiency can
be improved using bio-inspired optimization models as
suggested in Bahari et al. (2016), where Hill Climbing al-
gorithm is used for temporal power analysis. If the power is
reducing then duty cycle is also reduced so that the SEPIC
system can take faster decisions to control the power. Due

to this, the DC-to-DC conversion stability is improved to
over 95%,whichmakes it usable for real-time applicability.
The stability and speed performance can be further
improved by using adaptive step-size when performing
MPPT. Such a model that uses adaptive step-size for
maximization of load voltage can be observed in (Kumar
et al. 2021a), wherein convergence delay and stability are

improved via optimization of the dVload
dDcycle

of load voltage,

when referenced against the duty cycle. Flow of this model
can be observed from Figure 3, wherein maximum and
minimum incremental voltage values are initialized, and
then these values are optimizedwith the help of differential
evaluation of the duty cycle.

Figure 3: Automatic step size control for improved PV inverter
performance (Kumar et al. 2021a).
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Due to the addition of automatic step-size control, the
output tracked power is improved by over 20%, when
compared with P&O and incremental conductance (IC)
methods. Efficiency of initial conversion (before settling
time) is achieved to be 95.5%, which is higher than P&O
that provides an efficiency of 85.11%, and IC which pro-
vides an efficiency of 88.53% for the same network con-
nections. Similarly, the settling efficiency of the proposed
model is 98.2%, which is higher than P&O and IC models,
that give an efficiency of 98.08 and 98.16% respectively.
Thereby improving the real-time deploy-ability of MPPT
systems. Due to the adaptive step-size, the convergence
delay is reduced by 40% when compared with P&O and
IC methods. This high efficiency requires the proposed
models to be integrated with existing MPPT systems with
high accuracy. In order to interface these models, various
integration issues must be resolved. A survey of these
integration issues can be observed from Hemavathi and
Gifta (2020), wherein issues like reduced stability, low
power transfer, and high processing delay are discussed.
These issues are resolved using artificial neural network
based fuzzy inference system (ANFIS) model that provides
low delay, high power transfer decisions and improved
output stability. This decision-making process can be
further speed up using Integral sliding mode control
(ISMC), but the model has stability issues. These issues are
resolved using the direct duty ratio control (DDRC) variable
step size (VSS) P&O model as proposed in Pahari (2018).
This model is able to achieve faster stability thereby
reducing convergence time. This also assists in reducing
the total harmonic current and voltage distortions (V-THD
and I-THD) when compared with ISMC and SMC models. A
THD value of 1.9% is achieved using these models, which
makes the system 98% efficient in terms of power conver-
sion, thereby improving its real-time deploy-ability.

It is observed that fuzzy models have improved
decision-making performance due to reduced uncertainty
in terms of data values. The work in Pareek and Kaur (2021)
extends simplistic fuzzy models and proposes a ANFIS
model that is integrated with PID controller for improving
the efficiency of MPPT systems. The model is able to
improve overall stability of output voltage by 25% when
compared with simple ANFIS controller, which makes it
suitable for PV system integration. Due to the reduced
complexity of fuzzy logic controller (FLC) models, they are
easy to implement on hardware platforms. This increases
overall speed of operation for these decision control de-
vices, thereby further improving their real-time applica-
bility. The work in Fannakh, Ehafyani, and Zouggar (2019)
proposes such a hardware implementable fuzzy model,
that is designed to work on a low power Arduino chip. The

designed model has a high conversion efficiency of 97%,
and a low power consumption, thereby indicating its real-
time deployment capabilities. Neural networks (NN) can be
used to extend the performance of fuzzy logic control de-
vices for PV systems. The work in Saleem, El-zoghby, and
Sharaf (2021) describes this superiority by comparison of PI
& FLC, combination of PI and NN, & combination of PI and
ANFIS controller. It is observed that the NN model when
combined with PI control can be used to improve the
tracking performance of MPPT controllers in terms of po-
wer efficiency, and can also be used to reduce convergence
delay for DC-to-DC conversion process.

Complexity of Neural Networkmodels can be reduced
by the use of bio-inspired models, which produce similar
output performance when compared in terms of efficiency
of power transfer, stability, convergence delay, etc. These
models aim at reducing the error between current system
state and most optimum system state by iterative correc-
tions. One such method is proposed in Rajarajacholan,
Moses, and Barsanabanu (2021), wherein an improved
version of particle swarm optimization (PSO) model is
used. This model is named as Parameter Improved-PSO
(PIPSO), and is designed to reduce Integral Squared Error
(ISE) values of the converter’s voltage output. Due to this
the following parametric changes are observed when
compared with simple PSO controller,
– Rising delay is reduced by 30%
– Settling delay is reduced by 70%
– Peak overshoots are reduced by 20%
– ISE is reduced by 75%

These parameters are consistent when compared against
increased and decreased supply values, thereby making
the algorithm applicable for real-time deployment, even
under load fluctuations. Realtime implementations of
these systems can be observed in Patil and Prasad (2016)
and Jung et al. (2017), wherein design of H-Bridges and
staged designs are described in order to reduce settling
delay, improving power transfer efficiency and achieving
zero voltage switching (ZVS).

Machine learning models can be used to improve the
performance of PV MPPT systems via adapting to different
weather conditions. The work in Nkambule et al. (2021)
proposes a mechanism to compare different machine
learning models and analyze their effect on the efficiency of
such PV MPPT systems. Models like Decision Tree (DT),
Gaussian Process Regression (GPR), Multivariate Linear
Regression (MLR),WeightedK-NearestNeighbours (WK-NN),
Bagged Tree (BT), Linear Discriminant Analysis (LDA), Naïve
Bayes classifier (NBC), SVM and Recurrent Neural Networks
(RNN) were compared in terms of MPPT power efficiency
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performance under different weather conditions. The follow-
ing observations were made about these algorithms,
– SVM has the minimum MPPT testing error in terms of

root mean square error (RMSE) values.
– GPR has the best mean absolute error (MAE) perfor-

mance, which indicates better tracking capabilities.
– MLR has the fastest response time, which indicates

better convergence rate and better decision changing
capabilities.

– DT requires least delay for training, thereby making it
suitable for hardware implementation.

– Under normal irradiance conditions, SVM and RNN
have thehighest efficiencyofPVpower transferwhich is
99.77 and 99.58% respectively, which is better than DT
(97.7%), WK-NN (98.2%), MLR (97.6%), LDA (97.23%),
BT (96.8%), GPR (97.8%) and NBC (97.1%). Thereby
making them capable of usage in high performance
outdoor systems.

– Under partial shading conditions, SVM and WK-NN
have thehighest efficiencyofPVpower transferwhich is
96.76 and 95.12% respectively, which is better than DT
(92.96%), RNN (88.59%), MLR (92.56%), LDA (92.45%),
BT (91.01%), GPR (94.23%) and NBC (91.46%). Thereby
making them capable of usage in moderate perfor-
mance shaded environment PV systems.

– Under very low solar radiation conditions, SVM and
GPR have the highest efficiency of PV power transfer
which is 83.66 and 82.96% respectively, which is better
than DT (79.34%), WK-NN (81.5%), MLR (78.98%), LDA
(78.83%), BT (77.48%),RNN (75.77%) andNBC (78.07%).
Thereby making them capable of usage in low solar ra-
diation zones.

Thereby, it can be observed that SVM outperforms other
machine learningmodels in terms of output efficiency, and
thus must be used when deploying on-site PV systems.
The SVM model can be combined with P&O, IC, Neural
Networks or Fuzzy logic models as suggested in Zongo
(2021) and Taleb, Bouyakoub, and Mehedi (2021) in order
to improve its stability and power point tracking perfor-
mance. These systems can be used in high performance
applications like electric vehicle (eV) charging as described
in Sarkar and Bhattacharyya (2015), wherein an efficiency
of up-to 70%canbe achievedwhenoptimizationmodels for
MPPT and other internal parameters are used. The perfor-
mance can be improved using other machine learning
models for MPPT and DC-to-DC conversion control as sug-
gested in Pakkiraiah (2017), wherein artificial neural net-
works (ANN), SVM and ANFIS models outperform other
linear models like kNN, DT, etc. in terms of overall output
efficiency. ANNmodels provide offline training, high-speed

responses, nonlinear mapping, robust operation compact
solution for multivariate equations and less computational
effort when compared with other deep learningmodels like
RNN and convolutional neural networks (CNNs). The work
in Elobaid and Zakzouk (2015) studies this improvement in
performance, and suggests that ANN models must be used
for all kinds of PV deployment solutions. ANNs are com-
bined with fuzzy logic models to provide better degree of
control. Similarly, fuzzy logic can be combined with other
models like P&O for further improving its performance. The
work in Remoaldo and Jesus (2021) proposes such a two-
stagemodel, wherein P&O is used in thefirst stage, which is
followed by fuzzy logic-based control in the 2nd stage for
better decision control. The system works in the following
flow,
– Initially requirements and system design specifica-

tions are decided.
– Based on these requirements, parameters are selected

for the PV panels, along with their respective irradia-
tion and ambient temperature profiles.

– Boost converter parameters are tuned using fuzzy and
P&O operations.

– MPPT parameters are decided by the fuzzy decision
unit.

– Testing and evaluation of the converter and MPPT
parameters is done, and the best working model is
used for final analysis.

Due to these steps, the proposedmodel has faster response
time, better decision-making capabilities, and better sta-
bility when compared with MPPT and P&O algorithms
individually. This model works with high irradiance, but
doesn’t work well if irradiance values are low to moderate.
In order to obtain high efficiency of MPPT models under
such conditions, work in Kota and Bhukya (2019) proposes
an ANN model that can perform shading pattern identifi-
cation in order to decide global maximum power point
(GMMM) values. Due to the use of ANN, an efficiency of
97% is achieved which is 4% higher than that of artificial
bee colony (ABC) optimization, and 6% higher when
compared with particle swarm optimization (PSO) models.
Other models like Genetic Algorithms (GA), hybrid neural
networks, etc. are also discussed in Garud et al. (2021),
wherein it is observed that combinatorial models like
GA + FLC, GA + NN, etc. outperform singular systems in
terms of power efficiency and overall power tracking.
Similar models are described in Kumar et al. (2021b), Sak-
thivel and Jayalakshmi (2020), and Ali, Lehtonen, and
Darwish (2021) which indicate application of machine
learning techniques to improve the performance of DC-
to-DC converters, boost converters, MPPT models, etc.
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Application specific models can also be used to improve
performance of internal PVmodules. For instance, in order
to improve efficiency of DC-DC converters, the work in
Dileep and Singh (2017) proposes an active selectionmodel
that identifies the best performing approaches for PV sys-
tem optimization. Themodel uses a combination of Sliding
mode MPPT, Variable inductance MPPT, P&O, Single cycle
MPPT, FLC MPPT, NNMPPT and GA with P&O based MPPT
control systems, and implements a machine learning
based algorithm selection engine. This engine is able to
improve overall power efficiency, response time, and
convergence delay for the PV system. Out of these models,
the MPPT systems with sliding mode control outperform
other model architectures. This can also be observed in
Zhang, Zhong, and Ma (2021), wherein the SEPIC converter
when combined with sliding mode control provides an
efficiency of over 95%, which an be used for real-time PV
system deployments. An application of these systems can
be observed from Biswas et al. (2021), wherein optimized
PV systems are used for improving the charging capabil-
ities of tea harvesting systems.

Efficiency of SEPIC converters can be further improved
using Zeta topology as observed from Figure 4, wherein the
MOSFET is connected in series in order to improve output
stability. The work in Raj, Arya, and Gupta (2020) modifies
this Zeta converter, and adds a ZVS-based MPPT algorithm
to it in order to improve its duty cycle. Due to this addition,
the efficiency of the ZVS-Zeta converter is improved to
98.12%, which is higher than ZVS-SEPIC that has an effi-
ciency of 89%. This makes the Zeta converter a suitable
option for high efficiency control systems. Original SEPIC
and Zeta converters have an efficiency of 88.59 and 93.98%
respectively. All of these models use the IC MPPT control
technique, which is superior to the P&O model, that pro-
vides an accuracy of 87.71, 89.68, 83.39 and 90.62%

respectively for Zeta, ZVS Zeta, SEPIC, and ZVS SEPIC
respectively. Other topologies like buck, boost, and buck-
boost also performwell in terms of output efficiency, but do
not match the performance of Zeta and SEPIC models.

Work in Saidi et al. (2021) andAhmed and Salam (2016)
further assists in improving MPPT performance by using
neural networks and modified P&O models, that aim at
reducing systemharmonics, and improve convergence rate
of the system. These models can be further improved if
their internal MPPT controllers are replaced with step-size
MPPT controller, and SEPIC converter as suggested in
Kumar et al. (2021c). While fixed step-size controllers have
an efficiency between 72 and 92.14%; the adaptive step-size
controllers are able to perform the same control task with
82–92.2% efficiency, which makes them a better and faster
option for PV systems. This efficiency can be improved by
machine learning models as proposed in Memaya et al.
(2019), Natsheh (2013), Yap, Charles, and Lim (2020), and
Khadka et al. (2020), wherein models like hybrid neural
network, GA, SVM, kNN, DT, etc. are discussed. It is
observed that NN, GA and SVMoutperform any otherMPPT
optimization technique, and must be used for real-time
deployment. An example of such a machine learning
model for Solar Energy Harvesting System can be observed
in Sharma, Haque, and Jaffery (2018), wherein an efficiency
of 96% is achieved using buck converters with MPPT
control. Similar models for control are mentioned in Singh,
Singh, and Roy (2017), Godse and Bhat (2020), Panda,
Padhy, and Patel (2008), wherein NAC-based Synchroni-
sation, Mathematical Morphology, and PSO Optimized
SSSCmodels are described for improving overall efficiency
of system models. Thus, it can be observed that machine
learning models outperform linear models in terms of PV
system efficiency, and they must be deployed for real-time
PV systems. In the next section, a statistical review of these

Figure 4: The Zeta converter topology (Baharudin et al. 2017).
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Table : Statistical analysis of different PV system models.

Method DC–DC con-
verter used

MPPT
model used

Efficiency
(%)

SEPIC with Bat (Khather and
Ibrahim )

SEPIC Bat with PID .

Neural Network (Njomo et al.
)

Buck-boost NN 

Neural Network (Njomo et al.
)

Buck-boost P&O .

SVM (Yan et al. ) Buck-boost SVM .
FLC (Blange, Mahanta, and
Gogoi )

Buck-boost FLC 

NN (Blange, Mahanta, and
Gogoi )

Buck-boost NN .

PI with SEPIC (Sakthivel and
Jayalakshmi )

SEPIC PI 

PID with SEPIC (Sakthivel and
Jayalakshmi )

SEPIC PID 

Hill Climb-ing (Bahari et al.
)

SEPIC Hill Climb-
ing



Adaptive step-size (Kumar
et al. a)

SEPIC Adapt step
size

.

Adaptive step-size (Kumar
et al. a)

SEPIC P&O .

Adaptive step-size (Kumar
et al. a)

SEPIC IC .

VSS P&O (Pahari ) SEPIC VSS P&O 

ANFIS (Pareek and Kaur
)

SEPIC ANFIS 

NN (Fannakh, Ehafyani, and
Zouggar )

Buck-boost NN 

PIPSO (Saleem, El-zoghby,
and Sharaf )

SEPIC PIPSO 

SVM (Nkambule et al. ) SEPIC SVM .
RNN (Nkambule et al. ) SEPIC RNN .
DT (Nkambule et al. ) SEPIC DT .
W-kNN (Nkambule et al.
)

SEPIC W-kNN .

MLR (Nkambule et al. ) SEPIC MLR .
LDA (Nkambule et al. ) SEPIC LDA .
BT (Nkambule et al. ) SEPIC BT .
GPR (Nkambule et al. ) SEPIC GPR .
NBC (Nkambule et al. ) SEPIC NBC .
ANN (Nkambule et al. ) Buck-boost ANN P&O 

ABC (Kota and Bhukya ) Buck-boost ABC P&O 

PSO (Kota and Bhukya ) Buck-boost PSO P&O 

ZVS-IC with Zeta (Baharudin
et al. )

Zeta-ZVS IC .

ZVS-IC with SEPIC (Baharudin
et al. )

SEPIC-ZVS IC 

Zeta-IC (Baharudin et al.
)

Zeta IC .

SEPIC-IC (Baharudin et al.
)

SEPIC IC .

ZVS- P&O with Zeta (Bahar-
udin et al. )

Zeta-ZVS P&O .

ZVS- P&O with SEPIC (Bahar-
udin et al. )

SEPIC-ZVS P&O .

Table : (continued)

Method DC–DC con-
verter used

MPPT
model used

Efficiency
(%)

Zeta- P&O (Baharudin et al.
)

Zeta P&O .

SEPIC- P&O (Baharudin et al.
)

SEPIC P&O .

Fixed size SEPIC (Memaya
et al. )

SEPIC Fixed step
size

.

Auto step size SEPIC (Mem-
aya et al. )

SEPIC Auto step
size

.

Figure 5: PV efficiency of conversion comparison.
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models can be observed, which will assist researchers in
identifying the best model for their design of PV system.

Statistical analysis

In order to identify the best performing PV system, this
section compares various PV implementations in terms of
MPPT model, DC–DC converter used and the obtained ef-
ficiency. This analysis is tabulated in Table 1, wherein ef-
ficiency results of various models can be observed.

From these models it can be observed that machine
learning architectures like SVM, NN, RNN, and GA outper-
form other architectures in terms of overall efficiency of PV
conversion. This can also be observed from the visualiza-
tion done in Figure 5, wherein different models and their
respective efficiency evaluations are showcased for better
visibility.

Thus, the SEPIC models, and Zeta models outperform
in terms of overall accuracy of conversion when compared
with buck-boost models. Thereby, SEPIC & Zeta with SVM,
RNN, GA and NN is the best architecture choice when
designing any PV-based grid model.

Conclusion and future scope

From the results it can be observed that SEPIC and Zeta
models outperformbuck, boost, and buck-boost topologies
for DC-DC conversion. Out of these topologies, the Zeta is
used when higher stability is needed, while SEPIC is used
when better conversion efficiency is required. Neural net-
works, fuzzy controllers, SVM models, RNN models & GA
models outperform linear techniques like kNN, MLR, BT,
etc. which makes them suitable for real-time deployments.
Thus, for a system that requires faster convergence with
high efficiency can use a combination of SVM with SEPIC,
while for higher stability SVM with Zeta can be used. The
performance of these models can be further improved by
the user of Q-Learning based processing techniques, which
iteratively reduces error, thereby improving the efficiency
of conversion.
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