Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 27, 2014

A reliable algorithm for positive solutions of nonlinear boundary value problems by the multistage Adomian decomposition method

Jun-Sheng Duan, Randolph Rach and Abdul-Majid Wazwaz
From the journal Open Engineering

Abstract

In this paper, we present a reliable algorithm to calculate positive solutions of homogeneous nonlinear boundary value problems (BVPs). The algorithm converts the nonlinear BVP to an equivalent nonlinear Fredholm– Volterra integral equation.We employ the multistage Adomian decomposition method for BVPs on two or more subintervals of the domain of validity, and then solve the matching equation for the flux at the interior point, or interior points, to determine the solution. Several numerical examples are used to highlight the effectiveness of the proposed scheme to interpolate the interior values of the solution between boundary points. Furthermore we demonstrate two novel techniques to accelerate the rate of convergence of our decomposition series solutions by increasing the number of subintervals and adjusting the lengths of subintervals in the multistage Adomian decomposition method for BVPs.

References

[1] Agarwal R.P., O’Regan D., Wong P.J.Y., Positive solutions of differential, difference and integral equations, Kluwer, Dordrecht, 1999. 10.1007/978-94-015-9171-3Search in Google Scholar

[2] Wazwaz A.M., A reliable algorithm for obtaining positive solutions for nonlinear boundary value problems, Comput. Math. Appl., 2001, 41, 1237–1244. 10.1016/S0898-1221(01)00094-3Search in Google Scholar

[3] Duan J.S., Rach R., A new modification of the Adomian decomposition method for solving boundary value problems for higher order nonlinear differential equations, Appl. Math. Comput., 2011, 218, 4090–4118. 10.1016/j.amc.2011.09.037Search in Google Scholar

[4] Adomian G., Rach R., Meyers R., Numerical algorithms and decomposition, Comput. Math. Appl., 1991, 22, 57–61. 10.1016/0898-1221(91)90013-TSearch in Google Scholar

[5] Adomian G., Rach R.C., Meyers R.E., Numerical integration, analytic continuation, and decomposition, Appl. Math. Comput., 1997, 88, 95–116. 10.1016/S0096-3003(96)00052-5Search in Google Scholar

[6] Vadasz P., Olek S., Convergence and accuracy of Adomian’s decomposition method for the solution of Lorenz equations, Int. J. Heat Mass Transfer, 2000, 43, 1715–1734. 10.1016/S0017-9310(99)00260-4Search in Google Scholar

[7] El-Tawil M.A., Bahnasawi A.A., Abdel-Naby A., Solving Riccati differential equation using Adomian’s decomposition method, Appl. Math. Comput., 2004, 157, 503–514. 10.1016/j.amc.2003.08.049Search in Google Scholar

[8] Ghosh S., Roy A., Roy D., An adaptation of Adomian decomposition for numeric-analytic integration of strongly nonlinear and chaotic oscillators, Comput. Methods Appl. Mech. Engrg., 2007, 196, 1133–1153. 10.1016/j.cma.2006.08.010Search in Google Scholar

[9] Arenas A.J., González-Parra G., Jódar L., Villanueva R.J., Piecewise finite series solution of nonlinear initial value differential problem, Appl. Math. Comput., 2009, 212, 209–215. 10.1016/j.amc.2009.02.014Search in Google Scholar

[10] Al-Bayati A.Y., Al-Sawoor A.J., Samarji M.A., A multistage Adomian decomposition method for solving the autonomous van der Pol system, Aust. J. Basic Appl. Sci., 2009, 3, 4397–4407. Search in Google Scholar

[11] Duan J.S., Rach R., New higher-order numerical one-step methods based on the Adomian and the modified decomposition methods, Appl. Math. Comput., 2011, 218, 2810–2828. 10.1016/j.amc.2011.08.024Search in Google Scholar

[12] Duan J.S., Rach R., Higher-order numericWazwaz-El-Sayed modi fied Adomian decomposition algorithms, Comput.Math. Appl., 2012, 63, 1557–1568. 10.1016/j.camwa.2012.03.050Search in Google Scholar

[13] Adomian G., Rach R., Inversion of nonlinear stochastic operators, J. Math. Anal. Appl., 1983, 91, 39–46. 10.1016/0022-247X(83)90090-2Search in Google Scholar

[14] Adomian G., Stochastic systems, Academic, New York, 1983. Search in Google Scholar

[15] Adomian G., Nonlinear stochastic operator equations, Academic, Orlando, FL, 1986. 10.1016/B978-0-12-044375-8.50012-5Search in Google Scholar

[16] Adomian G., Nonlinear stochastic systems theory and applications to physics, Kluwer Academic, Dordrecht, 1989. 10.1007/978-94-009-2569-4Search in Google Scholar

[17] Adomian G., Solving frontier problems of physics: The decomposition method, Kluwer Academic, Dordrecht, 1994. 10.1007/978-94-015-8289-6Search in Google Scholar

[18] Wazwaz A.M., Partial differential equations and solitary waves theory, Higher Education Press, Beijing, and Springer-Verlag, Berlin, 2009. 10.1007/978-3-642-00251-9Search in Google Scholar

[19] Wazwaz A.M., Linear and nonlinear integral equations: Methods and applications, Higher Education Press, Beijing, and Springer-Verlag, Berlin, 2011. Search in Google Scholar

[20] Serrano S.E., Engineering uncertainty and risk analysis: A balanced approach to probability, statistics, stochastic modeling, and stochastic differential equations, Second Revised Edition, HydroScience, Ambler, PA, 2011. Search in Google Scholar

[21] Bougoffa L., Bougouffa S., Adomian method for solving some coupled systems of two equations, Appl. Math. Comput., 2006, 177, 553–560. 10.1016/j.amc.2005.07.070Search in Google Scholar

[22] Adomian G., Rach R., Analytic solution of nonlinear boundaryvalue problems in several dimensions by decomposition, J. Math. Anal. Appl., 1993, 174, 118–137. 10.1006/jmaa.1993.1105Search in Google Scholar

[23] Adomian G., Rach R., A new algorithm for matching boundary conditions in decomposition solutions, Appl. Math. Comput., 1993, 58, 61–68. 10.1016/0096-3003(93)90012-4Search in Google Scholar

[24] Wazwaz A.M., Approximate solutions to boundary value problems of higher order by the modified decomposition method, Comput. Math. Appl., 2000, 40, 679–691. 10.1016/S0898-1221(00)00187-5Search in Google Scholar

[25] Wazwaz A.M., The modified Adomian decomposition method for solving linear and nonlinear boundary value problems of tenthorder and twelfth-order, Int. J. Nonlinear Sci. Numer. Simul., 2000, 1, 17–24. 10.1515/IJNSNS.2000.1.1.17Search in Google Scholar

[26] Wazwaz A.M., A note on using Adomian decomposition method for solving boundary value problems, Found. Phys. Lett., 2000, 13, 493–498. Search in Google Scholar

[27] Wazwaz A.M., The numerical solution of special eighth-order boundary value problems by the modified decomposition method, Neural Parallel Sci. Comput., 2000, 8, 133–146. Search in Google Scholar

[28] Al-Hayani W., Casasús L., Approximate analytical solution of fourth order boundary value problems, Numer. Algorithms, 2005, 40, 67–78. 10.1007/s11075-005-3569-9Search in Google Scholar

[29] Bougoffa L., Adomian method for a class of hyperbolic equations with an integral condition, Appl. Math. Comput., 2006, 177, 545–552. 10.1016/j.amc.2005.07.069Search in Google Scholar

[30] Tatari M., Dehghan M., The use of the Adomian decomposition method for solving multipoint boundary value problems, Physica Scripta, 2006, 73, 672–676. 10.1088/0031-8949/73/6/023Search in Google Scholar

[31] Hashim I., Adomian decomposition method for solving BVPs for fourth-order integro-differential equations, J. Comput. Appl. Math., 2006, 193, 658–664. 10.1016/j.cam.2005.05.034Search in Google Scholar

[32] Jafari H., Daftardar-Gejji V., Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method, Appl. Math. Comput., 2006, 180, 700–706. 10.1016/j.amc.2006.01.007Search in Google Scholar

[33] Jang B., Two-point boundary value problems by the extended Adomian decomposition method, J. Comput. Appl.Math., 2008, 219, 253–262. 10.1016/j.cam.2007.07.036Search in Google Scholar

[34] Ebadi G., Rashedi S., The extended Adomian decomposition method for fourth order boundary value problems, Acta Univ. Apulensis, 2010, 22, 65–78. Search in Google Scholar

[35] Dehghan M., Tatari M., Finding approximate solutions for a class of third-order non-linear boundary value problems via the decomposition method of Adomian, Int. J. Comput. Math., 2010, 87, 1256–1263. 10.1080/00207160802270853Search in Google Scholar

[36] Ebaid A.E., Exact solutions for a class of nonlinear singular twopoint boundary value problems: The decomposition method, Z. Naturforsch., 2010, 65a, 1–6. 10.1515/zna-2010-0301Search in Google Scholar

[37] Ebaid A., A new analytical and numerical treatment for singular two-point boundary value problems via the Adomian decomposition method, J. Comput. Appl. Math., 2011, 235, 1914–1924. 10.1016/j.cam.2010.09.007Search in Google Scholar

[38] Al-Hayani W., Adomian decomposition method with Green’s function for sixth- order boundary value problems, Comp.Math. Appl., 2011, 61, 1567–1575. 10.1016/j.camwa.2011.01.025Search in Google Scholar

[39] Aly E.H., Ebaid A., Rach R., Advances in the Adomian decomposition method for solving two-point nonlinear boundary value problems with Neumann boundary conditions, Comp. Math. Appl., 2012, 63, 1056–1065. 10.1016/j.camwa.2011.12.010Search in Google Scholar

[40] Shawagfeh N.T., Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. Comput., 2002, 131, 517–529. 10.1016/S0096-3003(01)00167-9Search in Google Scholar

[41] Ray S.S., Bera R.K., An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method, Appl. Math. Comput., 2005, 167, 561–571. 10.1016/j.amc.2004.07.020Search in Google Scholar

[42] Momani S., Shawagfeh N., Decomposition method for solving fractional Riccati differential equations, Appl. Math. Comput., 2006, 182, 1083–1092. 10.1016/j.amc.2006.05.008Search in Google Scholar

[43] Rach R., A convenient computational form for the Adomian polynomials, J. Math. Anal. Appl., 1984, 102, 415–419. 10.1016/0022-247X(84)90181-1Search in Google Scholar

[44] Adomian G., Rach R., Generalization of Adomian polynomials to functions of several variables, Comput. Math. Appl., 1992, 24, 11–24. 10.1016/0898-1221(92)90037-ISearch in Google Scholar

[45] Adomian G., Rach R., Solving nonlinear differential equations with decimal power nonlinearities, J. Math. Anal. Appl., 1986, 114, 423–425. 10.1016/0022-247X(86)90094-6Search in Google Scholar

[46] Wazwaz A.M., A new algorithm for calculating Adomian polynomials for nonlinear operators, Appl. Math. Comput., 2000, 111, 53–69. 10.1016/S0096-3003(99)00063-6Search in Google Scholar

[47] Abdelwahid F., A mathematical model of Adomian polynomials, Appl. Math. Comput., 2003, 141, 447–453. 10.1016/S0096-3003(02)00266-7Search in Google Scholar

[48] Rach R., A new definition of the Adomian polynomials, Kybernetes, 2008, 37, 910–955. 10.1108/03684920810884342Search in Google Scholar

[49] Abbaoui K., Cherruault Y., Seng V., Practical formulae for the calculus of multivariable Adomian polynomials, Math. Comput. Modelling, 1995, 22, 89–93. 10.1016/0895-7177(95)00103-9Search in Google Scholar

[50] Zhu Y., Chang Q., Wu S., A new algorithm for calculating Adomian polynomials, Appl. Math. Comput., 2005, 169, 402–416. 10.1016/j.amc.2004.09.082Search in Google Scholar

[51] Biazar J., Ilie M., Khoshkenar A., An improvement to an alternate algorithm for computing Adomian polynomials in special cases, Appl. Math. Comput., 2006, 173, 582–592. 10.1016/j.amc.2005.04.052Search in Google Scholar

[52] Azreg-Aïnou M., A developed new algorithm for evaluating Adomian polynomials. CMES-Comput. Model. Eng. Sci., 2009, 42, 1–18. Search in Google Scholar

[53] Duan J.S., Recurrence triangle for Adomian polynomials, Appl. Math. Comput., 2010, 216, 1235–1241. 10.1016/j.amc.2010.02.015Search in Google Scholar

[54] Duan J.S., An eficient algorithm for the multivariable Adomian polynomials, Appl. Math. Comput., 2010, 217, 2456–2467. 10.1016/j.amc.2010.07.046Search in Google Scholar

[55] Duan J.S., Convenient analytic recurrence algorithms for the Adomian polynomials, Appl. Math. Comput., 2011, 217, 6337– 6348. 10.1016/j.amc.2011.01.007Search in Google Scholar

[56] Duan J.S., Rach R., Wazwaz A.M., Chaolu T., Wang Z., A new modified Adomian decomposition method and its multistage form for solving nonlinear boundary value problems with Robin boundary conditions, Appl. Math. Model., 2013, 37, 8687– 8708. 10.1016/j.apm.2013.02.002Search in Google Scholar

[57] Wazwaz A.M., A reliable modification of Adomian decomposition method, Appl. Math. Comput., 1999, 102, 77–86. 10.1016/S0096-3003(98)10024-3Search in Google Scholar

[58] Wazwaz A.M., Rach R., Duan J.S., The modified Adomian decomposition method and the noise terms phenomenon for solving nonlinear weakly-singular Volterra and Fredholm integral equations, Cent. Eur. J. Eng., 2013, 3, 669–678. 10.2478/s13531-013-0123-8Search in Google Scholar

[59] Duan J.S., Rach R., Wang Z., On the effective region of convergence of the decomposition series solution, J. Algorithms Comput. Tech., 2013,7, 227–247. 10.1260/1748-3018.7.2.227Search in Google Scholar

[60] Adomian G., Rach R., Anharmonic oscillator systems, J. Math. Anal. Appl., 1983, 91, 229–236. 10.1016/0022-247X(83)90101-4Search in Google Scholar

[61] Zhang S., Jin J., Computation of special functions, John Wiley & Sons, New York, 1996. Search in Google Scholar

[62] Adomian G., On product nonlinearities in stochastic differential equations, Appl. Math. Comput., 1981, 8, 79–82. 10.1016/0096-3003(81)90033-3Search in Google Scholar

Received: 2014-10-19
Accepted: 2014-10-26
Published Online: 2014-11-27

©2015 J.-S. Duan et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow