Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 28, 2015

A comparison of experimental results of soot production in laminar premixed flames

Nattan R. Caetano, Diego Soares, Roger P. Nunes, Fernando M. Pereira, Paulo Smith Schneider, Horácio A. Vielmo and Flávio Tadeu van der Laan
From the journal Open Engineering

Abstract

Soot emission has been the focus of numerous studies due to the numerous applications in industry, as well as the harmful effects caused to the environment. Thus, the purpose of this work is to analyze the soot formation in a flat flame burner using premixed compressed natural gas and air, where these quasi-adiabatic flames have one-dimensional characteristics. The measurements were performed applying the light extinction technique. The air/fuel equivalence ratiowas varied to assess the soot volume fractions for different flame configurations. Soot production along the flamewas also analyzed by measurements at different heights in relation to the burner surface. Results indicate that soot volume fraction increases with the equivalence ratio. The higher regions of the flamewere analyzed in order to map the soot distribution on these flames. The results are incorporated into the experimental database for measurement techniques calibration and for computational models validation of soot formation in methane premixed laminar flames, where the equivalence ratio ranging from 1.5 up to 8.

References

[1] Glassman I., Yetter R.A., Combustion, Elsevier, Fourth Edition, 2008, 773. Search in Google Scholar

[2] Caetano N.R., Pereira F.M., Vielmo H.A., van der Laan F.T., Experimental Study of Soot Volume Fraction Applied in Laminar Diffusion Flames, Mod. Mech. Eng., 2013, 3, 137-141. 10.4236/mme.2013.34019Search in Google Scholar

[3] Mulholland G.W., Smoke production and properties, The SFPE Handbook of Fire Protection Engineering, 2002, 258. Search in Google Scholar

[4] Choi M.Y., Mulholland G.W., Hamins A., Kashiwagi T., Comparison of the Soot Volume Fraction using Gravimetric and Light Extinction Techniques, Combust. Flame, 1995, 102, 161. 10.1016/0010-2180(94)00282-WSearch in Google Scholar

[5] Santoro R.J., Semerjin H.G., Dobbins R.A., Soot particle measurements in diffusion flames, Combust. Flame, 1983, 51, 203. 10.1016/0010-2180(83)90099-8Search in Google Scholar

[6] Mulholland G.W., Bryner N.P., Comparison of a Fractal Smoke Optics Model with Light Extinction Measurements, Atmos. Environ., 1994, 28, 889. 10.1016/1352-2310(94)90247-XSearch in Google Scholar

[7] Zhao H., Ladommatos N., Optical diagnostics for soot and temperature measurement in diesel engines, Prog. Energ. Combust., 1998, 24(3), 221. 10.1016/S0360-1285(97)00033-6Search in Google Scholar

[8] Santos A.A.B., Influência do Teor de O2 e da Velocidade do Ar na Formação da Fuligem em Chmas Difusas de Acetileno com Escoamento Anular Paralelo doOxidante,Master thesis, University of Campinas, 2001. Search in Google Scholar

[9] Caetano N.R., Pereira F.M., Vielmo H.A., van der Laan F.T., Assessment of Soot Emissions from Commercial Fuels, IJESIT, 2013, 3, 89-92. Search in Google Scholar

[10] Tran M.K., Dunn-Rankin D., Pham T.K., Characterizing sooting propensity in biofuel–diesel flames, Combust. Flame, 2012, 159, 2181. Search in Google Scholar

[11] Appel J., Bockhorn H., Wulkow M., A detailed numerical study of the evolution of soot particle size distribuitions on laminar premixed flames, Chemosphere, 2001, 42, 635. 10.1016/S0045-6535(00)00237-XSearch in Google Scholar

[12] D’Anna A., Sirignano M., Commodo M., Pagliara R., Minutolo P., An Experimental and Modelling Study of Particulate Formation in Premixed Flames Burning Methane, Combust. Sci. Technol., 2008, 180, 950. 10.1080/00102200801894448Search in Google Scholar

[13] Tree D.R., Svensson K.I., Soot processes in compression ignition engines, Prog. Energ. Combust., 2007, 33, 272. 10.1016/j.pecs.2006.03.002Search in Google Scholar

[14] Caetano N.R., van der Laan F.T., Turbulent Flowfield Analysis in a Bluff-Body Burner Using PIV, WJM, 2013, 03, 215-223. 10.4236/wjm.2013.34021Search in Google Scholar

[15] Bosschaart K.J., de Goey L.P.H., Detailed analysis of the heat flux method for measuring burning velocities, Combust. Flame, 2003, 132, 170. 10.1016/S0010-2180(02)00433-9Search in Google Scholar

[16] Frencklach M., Clary D.W., Remachandra M.K., Shock Tube Study of the Fuel Structure Effects on the Chemicals Kinectical Mechanisms Responsible for Soot Formation, NASA Contract. Rep. No. 174880, 1995. Search in Google Scholar

[17] Melton T.R., Vincitore A.M., Senkan S.M., The Effects os Equivalence Ratio on the Formation of Polycyclic Aromatic Hydrocarbons and Soot in Premixed Methane Flames, Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, Naples, Italy, 1998. 10.1016/S0082-0784(98)80001-5Search in Google Scholar

[18] Hadef R., Geigle K.P., Meier W., Aigner M., Soot characterization with laser induced incandescence applied to a laminar premixed ethylene-air flame, Int. J. Therm. Sci., 2010, 49, 1457. Search in Google Scholar

[19] Pinto O., Estudo Teórico da Formação de Fuligem na Combustão do N-heptano, Bachelor monography, Federal University of Rio Grande do Sul, 2012. Search in Google Scholar

Received: 2014-9-5
Accepted: 2015-1-20
Published Online: 2015-5-28

©2015 N.R. Caetano et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow