Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 30, 2016

Plastometric tests for plasticine as physical modelling material

Łukasz Wójcik, Konrad Lis and Zbigniew Pater
From the journal Open Engineering

Abstract

This paper presents results of plastometric tests for plasticine, used as material for physical modelling of metal forming processes. The test was conducted by means of compressing by flat dies of cylindrical billets at various temperatures. The aim of the conducted research was comparison of yield stresses and course of material flow curves. Tests were made for plasticine in black and white colour. On the basis of the obtained experimental results, the influence of forming parameters change on flow curves course was determined. Sensitivity of yield stresses change in function of material deformation, caused by forging temperature change within the scope of 0&C ÷ 20&C and differentiation of strain rate for ˙ɛ = 0.563; ˙ɛ = 0.0563; ˙ɛ = 0.0056s−1,was evaluated. Experimental curves obtained in compression test were described by constitutive equations. On the basis of the obtained results the function which most favourably describes flow curves was chosen.

References

[1] PreszW.,MazurekW.,Wanheim T., Modelowanie fizycznewprojektowaniu procesów obróbki plastycznej, Przegląd Mechaniczny, LV (9/69) (in Polish). Search in Google Scholar

[2] Świątkowski K., Analiza badań modelowych z użyciem materiałów woskowych, Obróbka Plastyczna Metali, 1994, 5, 5-14 (in Polish). Search in Google Scholar

[3] Świątkowski K., Własności mechaniczne woskowych materiałów modelowych, Obróbka Plastyczna Metali, 1994, 5, 15-21 (in Polish). Search in Google Scholar

[4] Kowalczyk L.: Modelowanie fizykalne procesów obróbki plastycznej. ITE Radom 1995 (in Polish). Search in Google Scholar

[5] Gontarz A., Łukasik K., Pater Z., Weroński W.: Technologia kształtowania i modelowania nowego procesu wytwarzania wkrętów szynowych. Wydanie Politechniki Lubelskiej Lublin 2003 (in Polish). Search in Google Scholar

[6] Arentoft M., Gronostajski Z., Niechajowicz A.,Wanheim T., Physical and mathematical modelling of extrusion processes, Journal of Materials Processing Technology, 2000, 106, 2-7. 10.1016/S0924-0136(00)00629-4Search in Google Scholar

[7] Mandic V., Stefanovic M., Physical modelling and FEM simulation of the hot bulk forming processes, Journal for Technology of Plasticity., 2002, 27, 1-2, 41-53. Search in Google Scholar

[8] Zhan M., Liu Y., Yang H., Physiclal modeling platform using plasticine, Journal of Materials Processing Technology, 2001, 117, 62-65. 10.1016/S0924-0136(01)01109-8Search in Google Scholar

[9] Balasundar I., Sudhakara M., Raghu T., Equal channel angular pressing die to extrude a variety ofmaterials,Materials and Design, 2009, 30, 1050-1059. 10.1016/j.matdes.2008.06.057Search in Google Scholar

[10] Khalili Meybodi A., Assempour A. Farahani S., A general methodology for bearing design in non symmetric T - Shaped sections in extrusion process, Journal of Materials Processing Technology, 2012, 212, 249-261. 10.1016/j.jmatprotec.2011.09.010Search in Google Scholar

[11] Wong S. F., Hodgson P. D., Chong C.J., Thomson P. F., Physical modelling with application to metal working especially to hot rolling, Journal of Materials Processing Technology, 1996, 62, 260-274. 10.1016/0924-0136(95)02219-8Search in Google Scholar

[12] Sofuoglu H., Rasty J., Flow behavior of Plasticine used in physical modeling of metal forming processes, Tribology International, 2000, 33, 523-529. 10.1016/S0301-679X(00)00092-XSearch in Google Scholar

[13] Miresaeidi M., Biglari F. R., Nikbin K., Moazami Goudarzi E., Bagherzadeh S., Optimum Forging Preform Shape Design by Interpolation of Boundary Nodes, Proceedings of the World Congress on Engineering, 2009, 2. Search in Google Scholar

[14] Asswmpour A., Razi S., Physical modeling of extrusion process, Journal of Mechanical Ennineering, 2003, 4(1), 61-69. Search in Google Scholar

[15] Vazquez V., Altan T., New Concepts in die design - physical and computer modeling applications, Journal of Materials Processing Technology, 2000, 98, 212-223. 10.1016/S0924-0136(99)00202-2Search in Google Scholar

[16] Pertence A. E. M., Cetlin P.R., Analysis of a new model material for the physical simulation of metal forming, Journal ofMaterials Processing Technology, 1998, 84, 261-267 10.1016/S0924-0136(98)00228-3Search in Google Scholar

[17] Segawa A., Kawanami T., Rolling - deformation characteristics of clad materials determined by model experiment and numerical simulation: experimental rolling tests using plasticine, Journal of Materials Processing Technology, 1995, 47, 375-384. 10.1016/0924-0136(95)85010-4Search in Google Scholar

Received: 2016-6-10
Accepted: 2016-8-5
Published Online: 2016-12-30

©2016 Ł. Wójcik et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow