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“Nascent” Fe(0)-mediated living radical 
copolymerization of styrene and acrylonitrile

Abstract: In this work, we reported the synthesis of copoly­
mers of poly(styrene-co-acrylonitrile) via single-electron 
transfer-living radical polymerization using CCl4 as an 
initiator and Zn(0)/2,2′-bipyridine (Bpy)/FeCl2 as catalyst 
complexes. The polymerization was carried out at 25°C. 
The polymerization proceeded in a living fashion based 
on “nascent” Fe(0) as the source of the transition metal, 
which was prepared by Zn(0)/FeCl2 in situ. The kinetic 
experimental results showed that the copolymerization 
is first-order kinetics. The molecular weights increased 
linearly with respect to monomer conversion, and narrow 
polydispersity index values were obtained. The effect of 
the molar ratio of [Zn(0)]0/[FeCl2]0 on polymerization was 
investigated. In addition, the polymerization carried out 
in different solvents was also investigated. The obtained 
random copolymer was characterized by 1H NMR and gel 
permeation chromatography. The living characteristic 
was demonstrated by chain extension experiment.
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1  Introduction
Conventional free-radical polymerization (FRP) is one of 
the most effective methods to prepare a polymeric mate­
rial. Nearly 50% of all commercial synthetic polymers are 
produced via radical chemistry, which provides a spec­
trum of materials for various markets (1). However, the 
main disadvantages of FRP are the poor control over the 
molecular weight and the polydispersity of the synthe­
sized macromolecules. Controlled/living polymerization 

(CRP) provides an essential technique to synthesize the 
polymers with predetermined molecular weight and 
narrow dispersities, such as block and graft copolymers, 
and star polymers.

In the past decade, a number of CRP methods have 
been developed, including stable free-radical polymeriza­
tion (2, 3), atom transfer radical polymerization (ATRP) 
(4–6), reversible addition-fragmentation chain transfer 
(7–9) and single-electron transfer-living radical polymeri­
zation (SET LRP) (10–12). Although the mechanism of SET 
LRP is still debated in the literature, this methodology has 
received great attention since its emergence in 2006 for 
the first time. A wide variety of vinyl monomers such as 
methacrylates (13–15), acrylamide (16) and vinyl chloride 
(10, 17, 18) can be polymerized in a controlled fashion with 
the use of these or similar systems.

In the SET LRP system, an equilibrium is established 
between the active species (polymeric radical) and the 
dormant polymer through a Cu(0)-mediated outer-sphere 
single-electron transfer process that has a very low acti­
vation energy. Compared with normal ATRP, SET LRP 
has a number of advantages, such as a large number of 
monomers, higher reaction rate and easy reaction condi­
tion, and provides an excellent control over the molecular 
weight and distribution. Furthermore, Cu(0) power/wire 
is used as the catalyst source; the merits of using Cu(0) 
power/wire for the reaction include the easy removal, 
the reuse of the catalyst and the resulting colorless reac­
tion mixture and colorless polymers due to the parts per 
million amount of catalyst used during the polymeriza­
tion process. N-ligands are used in the SET LRP process, 
such as Me6-TREN, TREN, PEI and 2,2′-bipyridine (Bpy), 
which assists in the disproportionation of Cu(I) complexes 
to generate Cu(0) in situ and Cu(II) complexes. Recent 
studies indicated that polar solvent could enhance the 
disproportionation of Cu(I) complexes (19).

Poly(styrene-co-acrylonitrile) (SAN) polymers with 
narrow polydispersity are used as compatibilizers to 
improve the interfacial adhesion of different phases (20). 
Recently, the Cu(0)-catalyzed living radical copolymeriza­
tion of styrene and acrylonitrile was investigated using 
ethyl 2-bromoisobutyrate as an initiator and 2,2′-bipyri­
dine as a ligand. The polymerization proceeded smoothly 
in dimethyl sulfoxide (DMSO) with higher than 90% 
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conversion in 13  h at 25°C. The polymerization kept the 
features of controlled radical polymerization (21).

Halogenated alkanes, such as CHCl3 or CCl4, which is 
inexpensive and readily available, are typically used in 
atom transfer radical addition and were among the first 
studied as ATRP initiators. Fleischmann and Percec (22) 
first reported the SET LRP of methyl methacrylate (MMA) 
using CCl4 as an initiator in the presence of Cu(0) Me6-
TREN at 25°C in DMSO. The reaction followed first-order 
kinetics, and the polymerization could be driven to com­
pletion in 10 h.

Iron is the most abundant transition metal element in 
the earth’s crust and is far less toxic than the precious Cu 
metal catalysts currently used. There are many excellent 
works on iron catalyst (23–25).

In this work, random copolymers of p(styrene-co-
acrylonitrile) were prepared via SET LRP using CCl4 as 
an initiator and “nascent” Fe(0)/2,2′-bipyridine (Bpy) as 
catalysts. The polymerization was carried out at 25°C in 
N,N-dimethylformamide (DMF). The kinetics on the iron-
mediated SET LRP was studied. Also, 1H NMR and gel 
permeation chromatography (GPC) were utilized to char­
acterize the obtained random copolymer.

2  Experimental

2.1  Materials

Styrene and acrylonitrile were purchased from Tianjin 
Fuchen Chemical Reagents Factory (Tanjin, China). They 
were distilled under reduced pressure prior to use. Carbon 
tetrachloride (CCl4, 99%), obtained from Hunan HuiHong 
Reagent Co. Ltd. (Hunan, China), was used without further 
purification. Anhydrous FeCl2 was obtained from Sinop­
harm Chemical Reagent Co Ltd. (Shanghai, China). Zinc 
powder [Zn(0), 98%] was purchased from Shanghai Chemi­
cal Reagent. Co. Ltd. (Shanghai, China) and was used as  
received. DMF, purchased from Tianjin Tianda Chemi­
cal Reagents Factory (Tianjin, China), was distilled under 
reduced pressure prior to use. 2,2′-Bipyridine (Bpy), pur­
chased from Shanghai Yongzeng Chemical Company Ltd. 
(Tianjin, China), was recrystallized twice from acetone prior 
to use. Other reagents were used without further purification.

2.2  Polymerization

In a typical experiment, 1.04 g of styrene (0.01 mol), 0.33 g 
of acrylonitrile (0.006 mol) and a certain amount of Zn(0), 

Bpy, DMF, FeCl2 and CCl4 were in turn placed into a 100-ml, 
three-neck, round-bottom flask equipped with a magnetic 
stirring bar, at a ratio of [styrene]0/[acrylonitrile]0/[CCl4]0/
[Zn(0)]0/[Bpy]0/[FeCl2]0 of 200:126:1:0.2:0.4:0.02. The bottle 
was degassed and charged with N2. Then the bottle was 
placed in an oil bath at 25°C.

The SET LRP of acrylonitrile and styrene was carried 
out. A typical example of the general procedure was as 
follows: The flask with the reaction mixture was placed 
in an oil bath at 25°C. After a desired time, the polymer 
was precipitated in a large excess of methanol. The result­
ant polymer was filtered and dried at 60°C in vacuo. The 
monomer conversions were determined gravimetrically.

2.3  Characterization

1H NMR spectrum was recorded on a Bruker 400-MHz 
spectrometer (Bruker Instruments Inc., Germany) in a 
CDCl3 solvent and tetramethyl silane as standard.

The number-average molecular weight (Mn,GPC) and 
polydispersity index (PDI) values of the copolymers of 
styrene and MMA were measured on a Waters 1515 GPC 
system (Wyatt Technology Co., USA), which was equipped 
with a refractive index detector, using HR1, HR3 and HR4 
columns with a molecular weight range of 100–500,000. 
Tetrahydrofuran was used as an eluent at a flow rate of 
1.0 ml/min. The molecular weight analysis was performed 
at 30°C based on the universal calibration procedure with 
polystyrene narrow standards.

The theoretical molecular weight (Mn,theo) of the result­
ing SAN was calculated by the following equation:

	
n,theo 0 St St 0 AN AN 0( [St] MW [AN] MW ) / [I]

Conversion
M F F= × × + × ×

× � (1)

where [St]0 and [AN]0 are the initial concentrations of the 
monomers in the feed; FSt and FAN are the molar fraction of 
St and AN in the copolymer, respectively, and were deter­
mined by 1H NMR; MWSt and MWAN are the molecular mass 
of St and AN, respectively; and [I]0 is the initial concentra­
tion of the initiator.

3  Results and discussion

3.1  Preparation of SAN by SET LRP

SAN copolymer was prepared by the SET LRP process 
using the Fe(0)/Bpy/CCl4 catalyst system as described in 
Scheme 1.
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The obtained SAN copolymer was characterized by 
the 1HNMR spectrum, as shown in Figure 1. The chemical 
shift (δ = 6.5–7.5 ppm) corresponded to the phenyl protons 
of styrene. The chemical shift at δ = 2.0–2.3 and 2.9–3.3 ppm 
was attributed to the protons of CH2 of acrylonitrile and to 
the protons of CH2 and CH of St, respectively. The molar com­
positions were determined by comparing the relative inten­
sities of the resonance signals at 6.7–7.4 and 2.9–3.3 ppm.

3.2  �Kinetics of the copolymerization of  
acrylonitrile and styrene by SET LRP

In the present work, Fe(0)-mediated living radical copoly­
merizations of St and AN were carried out at 25°C in DMF 
with a molar ratio of [St]0/[AN]0/[CCl4]0/[Zn(0)]0/[Bpy]0/
[FeCl2]0 at 200:126:1:0.2:0.4:0.02. The plot of monomer 
conversion and ln([M]0/[M]) vs. the polymerization time is 
shown in Figure 2.

As seen in Figure 2, ln([M]0/[M]) increases linearly 
with increasing polymerization time, demonstrating that 
the radical concentration remains constant through the 
polymerization process. However, an induction period 
(about 12 min) was observed under this polymerization 
condition, which indicates that some time was needed 
to establish a dynamic equilibrium between the concen­
trations of the Fe(II) and Fe(III) species as the reaction 
proceeded during the polymerization process. The appar­
ent rate constant app

pk , derived from app
0 pln([ M / M ]) ,k t=  

which was 6.94 × 10-6 s-1 according to Figure 2.
Figure 3 shows the dependence of the molecular weights 

(Mn,GPC) and molecular weight distribution (PDI) vs. the con­
version for SET LRP of St and AN in DMF at 25°C with CCl4 
as an initiator and Bpy as a ligand. As observed in Figure 3, 
the Mn values increased linearly with monomer conversion 
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Figure 1 1H NMR spectrum of SAN.
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Figure 2 Plots of monomer conversion and ln([M]0/[M]) vs. time for 
SET LRP of styrene and AN in DMF at 25°C with CCl4 as an initiator 
and Bpy as a ligand.  
[St]0/[AN]0/[CCl4]0/[Zn(0)]0/[Bpy]0/[FeCl2]0 = 200:126:1:0.2:0.4:0.02.
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Figure 3 Dependence of the molecular weights (Mn) and molecular 
weight distribution (PDI) vs. the conversion for SET LRP of St and AN 
in DMF at 25°C with CCl4 as an initiator and Bpy as a ligand. Reaction 
conditions were the same as those in Figure 2.
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Scheme 1 Mechanism of the SET LRP of St and AN.

and a good correlation was achieved between the experi­
mental and the theoretical values, indicating good control­
lability over the polymerizations in this case. The PDIs of 
the obtained copolymer remained narrow ( < 1.25) when the 
conversion was in the range of 18.05–51.04%. However, PDI 
values were relatively high at the beginning of the polym­
erization reactions but decreased to lower values with the 
progress of SET LRP, indicating that radical terminations 
occurred. The corresponding GPC traces are depicted in 
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Figure 4. The traces shifted cleanly and completely, confirm­
ing the increase in the molecular weights of polymers with 
monomer conversions. These observations suggest that the 
Fe(0)-mediated copolymerization of St and AN proceeds in 
a controlled manner.

3.3  �Effect of [Zn(0)]0/[FeCl2]0 ratio on the 
Fe(0)-mediated living radical copoly
merizations of St and AN

The ratio of [Zn(0)]0/[FeCl2]0 is an important parameter 
when preparing a catalyst complex for living radical 
polymerization because it has a strong effect on the poly­
merization rate and on the level of control attained in the 
polymerization. In this work, the effect of [Zn(0)]0/[FeCl2]0 
ratio on polymerization was investigated; the molar ratio 
of [St]0/[AN]0/[CCl4]0/[Zn(0)]0/[Bpy]0 was 200:126:1:0.2:0.4. 
The results are shown in Table 1.

From Table 1, it can be seen that the conversion 
increased from 13.73% to 44.52% when the ratio varied 

from 0.2:0.03 to 0.2:0.002 within the same reaction time. 
The molecular weights are close to theoretical values, and 
the PDI values are low. However, the PDI values became 
broader when the molar ratio of [Zn(0)]0/[FeCl2]0 was 
0.2:0.001. It indicated that there was not enough Fe2+ to 
initiate the polymerization and maintain the equilibrium. 
Furthermore, when the molar ratio of [Zn(0)]0/[FeCl2]0 was 
0.2:0, the PDI value was 1.65, indicating that the polymeri­
zation was uncontrolled without FeCl2.

3.4  �Effect of solvent on the Fe(0)-mediated 
living radical copolymerization of St and 
AN

The choice of solvent is also important for the ATRP. To 
determine the effect of solvent on the polymerization 
of St and AN initiated by CCl4 and catalyzed by Fe(0)/
Bpy, several solvents at 25°C were investigated, includ­
ing DMF, N-methyl-2-pyrrolidone, water and methanol. 
The molar ratio of [St]0/[AN]0/[CCl4]0/[Zn(0)]0/[Bpy]0/
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Figure 4 Evolution of GPC traces for SET LRP of St and AN in DMF at 25°C with CCl4 as an initiator and Bpy as a ligand.  
[St]0/[AN]0/[CCl4]0/[Zn(0)]0/[Bpy]0/[FeCl2]0 = 200:126:1:0.2:0.4:0.02.

Table 1 Effect of [Zn(0)]0/[FeCl2]0 ratio on Fe(0)-mediated living radical copolymerizations of St and AN in DMF at 25°C.

No.  [Zn(0)]0/[FeCl2]0 ratio  Time (h)   Conversion (%)  Mn,th (g/mol)  Mn,GPC (g/mol)  PDI

1  0.2:0.03  20  44.52  12,237  13,100  1.22
2  0.2:0.01    30.11  8276  8900  1.21
3  0.2:0.005    21.65  5950  6300  1.21
4  0.2:0.002    13.73  3774  5100  1.24
5  0.2:0.001    7.22  1984  4800  1.32
6  0.2:0    1.35  712  2800  1.65
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Figure 5 GPC curves of St and AN in DMF at 25°C. [St]0/[AN]0/[mar-
oinitiator]0/[Zn(0)]0/[Bpy]0/[FeCl2]0 was 200:126:1:0.2:0.4:0.02.

Table 2 Effect of solvent on Fe(0)-mediated living radical copolymerizations of St and AN at 25°C.

No.  Solvent   Time (h)  Conversion (%)  Mn,th (g/mol)  Mn,GPC (g/mol)  PDI

1  DMF   24  44.42  12,209  20,300  1.21
2  N-methyl-2-pyrrolidone    12.53  3444  19,300  1.25
3  DMF/H2O (v/v = 95:5)     48.22  13,254  24,000  1.23
4  Methanol     11.66  3205  15,900  1.25
5  H2O     14.75  4054  14,300  1.24

[FeCl2]0 was 200:126:1:0.2:0.4:0.02. The results are listed 
in Table 2.

As shown in Table 2, for the SET LRP in different sol­
vents, the conversion reached 48.22% in 24 h in DMF/H2O 
and 11.66% in methanol. Mn,GPC increased linearly with 
increasing monomer conversion and was very close to the 
theoretical values. The polymer was obtained in DMF with 
lower PDI values than those in other solvents, indicating 
a better control over the copolymerization of styrene and 
acrylonitrile.

3.5  �Chain extension of SAN using SAN as 
macroinitiators

The predetermined quantity of SAN (obtained by copoly­
merization) was dissolved in DMF. Then a predetermined 
quantity of styrene, acrylonitrile, Zn(0) powder, Bpy and 
FeCl2 was added; the molar ratio of [St]0/[AN]0/[macroini­
tiator]0/[Zn(0)]0/[Bpy]0/[FeCl2]0 was 200:126:1:0.2:0.4:0.02. 
Chain extension polymerization was carried out at 25°C. 
Figure 5 shows the GPC traces for the macroinitiator as 

well as for the resulting random copolymer. The macroini­
tiator has a Mn of 9600 g/mol and a PDI value of 1.22, with 
the resulting copolymer having an experimentally deter­
mined Mn of 16,100 g/mol and a PDI value of 1.37. The GPC 
traces indicated an extremely high initiation efficiency, 
with the resulting copolymer possessing an essentially 
symmetrical unimodal molecular distribution.

4  Conclusions
The single-electron transfer-living radical copolymeriza­
tion of St and AN was investigated using CCl4 as an ini­
tiator and Fe(0)/Bpy as a catalyst at 25°C. The kinetic 
experimental results showed that the single-electron 
transfer-living radical copolymerization of St and AN 
obeyed the first-order kinetics. The molecular weights 
increased linearly with the increase in monomer conver­
sion with lower PDI values. The molar ratio of [Zn(0)]0/
[FeCl2]0 could affect the copolymerization rate. The copo­
lymerization in DMF appears to give the best results in 
terms of copolymerization rate and PDI values. As-pre­
pared SAN copolymer possessed a chlorine-terminated 
atom, which could be reactivated during the chain exten­
sion reaction process.
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