Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 30, 2015

Saturated fatty acids induce endoplasmic reticulum stress in primary cardiomyocytes

  • Taha Haffar , Félix-Antoine Bérubé-Simard , Jean-Claude Tardif and Nicolas Bousette
From the journal Cell Pathology


Abstract: Introduction: Diabetes is a major contributor to cardiovascular disease. There is a growing body of evidence pointing towards intra-myocellular lipid accumulation as an integral etiological factor. Here we aimed to determine the effect of two common fatty acids on lipid accumulation and cellular stress in primary cardiomyocytes.

Methods: We evaluated lipid accumulation biochemically (by triacylglyceride assay and radiolabeled fatty acid uptake assay) as well as histologically (by BODIPY 493/503 staining) in mouse and rat neonatal cardiomyocytes treated with saturated (palmitate) or mono-unsaturated (oleate) fatty acids. Endoplasmic reticulum (ER) stress was evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting. Cell viability was assessed by propidium iodide staining.

Results: We found that both oleate and palmitate led to significant increases in intracellular lipid in cardiomyocytes; however there were distinct differences in the qualitative nature of BODIPY staining between oleate and palmitate treated cardiomyocytes. We also show that palmitate caused significant apoptotic cell death and this was associated with ER stress. Interestingly, co-administration of oleate with palmitate abolished cell death, and ER stress. Finally, palmitate treatment caused a significant increase in ubiquitination of Grp78, a key compensatory ER chaperone.

Conclusion: Palmitate causes ER stress and apoptotic cell death in primary cardiomyocytes and this is associated with apparent differences in BODIPY staining compared to oleate treated cardiomyocytes. Importantly, the lipotoxic effects of palmitate are abolished with the co-administration of oleate.


[1] Thrainsdottir, I. S., Aspelund, T., Thorgeirsson, G., Gudnason, V., Hardarson, T., Malmberg, K., et al. The association between glucose abnormalities and heart failure in the populationbased Reykjavik study, Diabetes Care. 2005, 28, 612-6. Search in Google Scholar

[2] Berry, C., Brett, M., Stevenson, K., McMurray, J. J. & Norrie, J. Nature and prognostic importance of abnormal glucose tolerance and diabetes in acute heart failure, Heart. 2008, 94, 296-304. Search in Google Scholar

[3] Jankovic, D., Winhofer, Y., Promintzer-Schifferl, M., Wohlschlager-Krenn, E., Anderwald, C. H., Wolf, P., et al. Effects of insulin therapy on myocardial lipid content and cardiac geometry in patients with type-2 diabetes mellitus, PLoS One. 2012, 7, e50077. Search in Google Scholar

[4] Utz, W., Engeli, S., Haufe, S., Kast, P., Hermsdorf, M., Wiesner, S., et al. Myocardial steatosis, cardiac remodelling and fitness in insulin-sensitive and insulin-resistant obese women, Heart. 2011, 97, 1585-9. Search in Google Scholar

[5] Ng, A. C., Delgado, V., Bertini, M., van der Meer, R. W., Rijzewijk, L. J., Hooi Ewe, S., et al. Myocardial steatosis and biventricular strain and strain rate imaging in patients with type 2 diabetes mellitus, Circulation. 2010, 122, 2538-44. Search in Google Scholar

[6] Ueno, M., Suzuki, J., Zenimaru, Y., Takahashi, S., Koizumi, T., Noriki, S., et al. Cardiac overexpression of hormone-sensitive lipase inhibits myocardial steatosis and fibrosis in streptozotocin diabetic mice, Am J Physiol Endocrinol Metab. 2008, 294, E1109-18. Search in Google Scholar

[7] Rijzewijk, L. J., van der Meer, R. W., Smit, J. W., Diamant, M., Bax, J. J., Hammer, S., et al. Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus, J Am Coll Cardiol. 2008, 52, 1793-9. Search in Google Scholar

[8] Sparagna, G. C., Jones, C. E. & Hickson-Bick, D. L. Attenuation of fatty acid-induced apoptosis by low-dose alcohol in neonatal rat cardiomyocytes, Am J Physiol Heart Circ Physiol. 2004, 287, H2209-15. Search in Google Scholar

[9] Hickson-Bick, D. L., Buja, L. M. & McMillin, J. B. Palmitatemediated alterations in the fatty acid metabolism of rat neonatal cardiac myocytes, J Mol Cell Cardiol. 2000, 32, 511-9. Search in Google Scholar

[10] Kong, J. Y. & Rabkin, S. W. Reduction of palmitate-induced cardiac apoptosis by fenofibrate, Mol Cell Biochem. 2004, 258, 1-13. Search in Google Scholar

[11] Rabkin, S. W., Huber, M. & Krystal, G. Modulation of palmitateinduced cardiomyocyte cell death by interventions that alter intracellular calcium, Prostaglandins Leukot Essent Fatty Acids. 1999, 61, 195-201. Search in Google Scholar

[12] Sparagna, G. C., Hickson-Bick, D. L., Buja, L. M. & McMillin, J. B. Fatty acid-induced apoptosis in neonatal cardiomyocytes: redox signaling, Antioxid Redox Signal. 2001, 3, 71-9. Search in Google Scholar

[13] Borradaile, N. M., Buhman, K. K., Listenberger, L. L., Magee, C. J., Morimoto, E. T., Ory, D. S., et al. A critical role for eukaryotic elongation factor 1A-1 in lipotoxic cell death, Mol Biol Cell. 2006, 17, 770-8. Search in Google Scholar

[14] Leroy, C., Tricot, S., Lacour, B. & Grynberg, A. Protective effect of eicosapentaenoic acid on palmitate-induced apoptosis in neonatal cardiomyocytes, Biochim Biophys Acta. 2008, 1781, 685-93. Search in Google Scholar

[15] Ostrander, D. B., Sparagna, G. C., Amoscato, A. A., McMillin, J. B. & Dowhan, W. Decreased cardiolipin synthesis corresponds with cytochrome c release in palmitate-induced cardiomyocyte apoptosis, J Biol Chem. 2001, 276, 38061-7. Search in Google Scholar

[16] Kong, J. Y. & Rabkin, S. W. Palmitate induces structural alterations in nuclei of cardiomyocytes, Tissue Cell. 1999, 31, 473-9. Search in Google Scholar

[17] Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods. 2001, 25, 402-8. Search in Google Scholar

[18] Miller, T. A., LeBrasseur, N. K., Cote, G. M., Trucillo, M. P., Pimentel, D. R., Ido, Y., et al. Oleate prevents palmitate-induced cytotoxic stress in cardiac myocytes, Biochem Biophys Res Commun. 2005, 336, 309-15. Search in Google Scholar

[19] Borradaile, N. M., Han, X., Harp, J. D., Gale, S. E., Ory, D. S. & Schaffer, J. E. Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death, J Lipid Res. 2006, 47, 2726-37. Search in Google Scholar

[20] McGavock, J. M., Lingvay, I., Zib, I., Tillery, T., Salas, N., Unger, R., et al. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study, Circulation. 2007, 116, 1170-5. Search in Google Scholar

[21] Korosoglou, G., Humpert, P. M., Ahrens, J., Oikonomou, D., Osman, N. F., Gitsioudis, G., et al. Left ventricular diastolic function in type 2 diabetes mellitus is associated with myocardial triglyceride content but not with impaired myocardial perfusion reserve, J Magn Reson Imaging. 2012, 35, 804-11. Search in Google Scholar

[22] Fu, S., Yang, L., Li, P., Hofmann, O., Dicker, L., Hide, W., et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity, Nature. 2011, 473, 528-31. Search in Google Scholar

[23] Kharroubi, I., Ladriere, L., Cardozo, A. K., Dogusan, Z., Cnop, M. & Eizirik, D. L. Free fatty acids and cytokines induce of nuclear factor-kappaB and endoplasmic reticulum stress, Endocrinology. 2004, 145, 5087-96. Search in Google Scholar

[24] Wei, Y., Wang, D., Topczewski, F. & Pagliassotti, M. J. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells, Am J Physiol Endocrinol Metab. 2006, 291, E275-81. Search in Google Scholar

[25] Guo, W., Wong, S., Xie, W., Lei, T. & Luo, Z. Palmitate modulates intracellular signaling, induces endoplasmic reticulum stress, and causes apoptosis in mouse 3T3-L1 and rat primary preadipocytes, Am J Physiol Endocrinol Metab. 2007, 293, E576-86. Search in Google Scholar

[26] Peter, A., Weigert, C., Staiger, H., Machicao, F., Schick, F., Machann, J., et al. Individual stearoyl-coa desaturase 1 expression modulates endoplasmic reticulum stress and inflammation in human myotubes and is associated with skeletal muscle lipid storage and insulin sensitivity in vivo, Diabetes. 2009, 58, 1757-65. Search in Google Scholar

[27] Mayer, C. M. & Belsham, D. D. Palmitate attenuates insulin signaling and induces endoplasmic reticulum stress and apoptosis in hypothalamic neurons: rescue of resistance and apoptosis through adenosine 5’ monophosphate-activated protein kinase activation, Endocrinology. 2010, 151, 576-85. Search in Google Scholar

[28] Ishiyama, J., Taguchi, R., Akasaka, Y., Shibata, S., Ito, M., Nagasawa, M., et al. Unsaturated FAs prevent palmitateinduced LOX-1 induction via inhibition of ER stress in macrophages, J Lipid Res. 2011, 52, 299-307. Search in Google Scholar

[29] Chaube, R., Kallakunta, V. M., Espey, M. G., McLarty, R., Faccenda, A., Ananvoranich, S., et al. Endoplasmic reticulum stress-mediated inhibition of NSMase2 elevates plasma membrane cholesterol and attenuates NO production in endothelial cells, Biochim Biophys Acta. 2012, 1821, 313-23. Search in Google Scholar

[30] Wu, T., Dong, Z., Geng, J., Sun, Y., Liu, G., Kang, W., et al. Valsartan protects against ER stress-induced myocardial apoptosis via CHOP/Puma signaling pathway in streptozotocininduced diabetic rats, Eur J Pharm Sci. 2011, 42, 496-502. Search in Google Scholar

[31] Li, J., Zhu, H., Shen, E., Wan, L., Arnold, J. M. & Peng, T. Deficiency of rac1 blocks NADPH oxidase activation, inhibits endoplasmic reticulum stress, and reduces myocardial remodeling in a mouse model of type 1 diabetes, Diabetes. 2010, 59, 2033-42. Search in Google Scholar

[32] Xu, J., Wang, G., Wang, Y., Liu, Q., Xu, W., Tan, Y., et al. Diabetes- and angiotensin II-induced cardiac endoplasmic reticulum stress and cell death: metallothionein protection, J Cell Mol Med. 2009, 13, 1499-512. Search in Google Scholar

[33] Yoshida, I., Monji, A., Tashiro, K., Nakamura, K., Inoue, R. & Kanba, S. Depletion of intracellular Ca2+ store itself may be a major factor in thapsigargin-induced ER stress and apoptosis in PC12 cells, Neurochem Int. 2006, 48, 696-702. Search in Google Scholar

[34] Wang, X. Z., Lawson, B., Brewer, J. W., Zinszner, H., Sanjay, A., Mi, L. J., et al. Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153), Mol Cell Biol. 1996, 16, 4273-80. Search in Google Scholar

[35] Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi, M., et al. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response, Mol Cell Biol. 2000, 20, 6755-67. Search in Google Scholar

[36] Han, X. J., Chae, J. K., Lee, M. J., You, K. R., Lee, B. H. & Kim, D. G. Involvement of GADD153 and cardiac ankyrin repeat protein in hypoxia-induced apoptosis of H9c2 cells, J Biol Chem. 2005, 280, 23122-9. Search in Google Scholar

[37] Fu, H. Y., Okada, K., Liao, Y., Tsukamoto, O., Isomura, T., Asai, M., et al. Ablation of C/EBP homologous protein attenuates endoplasmic reticulum-mediated apoptosis and cardiac dysfunction induced by pressure overload, Circulation 122, 361-9. 10.1161/CIRCULATIONAHA.109.917914Search in Google Scholar PubMed

[38] McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y. & Holbrook, N. J. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state, Mol Cell Biol. 2001, 21, 1249-59. Search in Google Scholar

[39] Yamaguchi, H. & Wang, H. G. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells, J Biol Chem. 2004, 279, 45495-502. Search in Google Scholar

[40] Listenberger, L. L., Han, X., Lewis, S. E., Cases, S., Farese, R. V., Jr., Ory, D. S., et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity, Proc Natl Acad Sci U S A. 2003, 100, 3077-82. Search in Google Scholar

[41] Henique, C., Mansouri, A., Fumey, G., Lenoir, V., Girard, J., Bouillaud, F., et al. Increased mitochondrial fatty acid oxidation is sufficient to protect skeletal muscle cells from palmitateinduced apoptosis, J Biol Chem. 2010, 285, 36818-27. Search in Google Scholar

[42] Suzuki, T., Lu, J., Zahed, M., Kita, K. & Suzuki, N. Reduction of GRP78 expression with siRNA activates unfolded protein response leading to apoptosis in HeLa cells, Arch Biochem Biophys. 2007, 468, 1-14. Search in Google Scholar

[43] Wey, S., Luo, B. & Lee, A. S. Acute inducible ablation of GRP78 reveals its role in hematopoietic stem cell survival, lymphogenesis and regulation of stress signaling, PLoS One. 2012, 7, e39047. Search in Google Scholar

[44] Suyama, K., Watanabe, M., Sakabe, K., Okada, Y., Matsuyama, D., Kuroiwa, M., et al. Overexpression of GRP78 protects glial cells from endoplasmic reticulum stress, Neurosci Lett. 2011, 504, 271-6. Search in Google Scholar

[45] Gu, X., Li, K., Laybutt, D. R., He, M. L., Zhao, H. L., Chan, J. C., et al. Bip overexpression, but not CHOP inhibition, attenuates fatty-acid-induced endoplasmic reticulum stress and apoptosis in HepG2 liver cells, Life Sci. 2010, 87, 724-32. Search in Google Scholar

[46] Masuoka, H. C., Mott, J., Bronk, S. F., Werneburg, N. W., Akazawa, Y., Kaufmann, S. H., et al. Mcl-1 degradation during hepatocyte lipoapoptosis, J Biol Chem. 2009, 284, 30039-48. Search in Google Scholar

Received: 2014-09-15
Accepted: 2015-02-11
Published Online: 2015-03-30
Published in Print: 2015-01-01

© 2015 Taha Haffar et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 5.12.2023 from
Scroll to top button