Abstract
Inhibition of IRE1 (inositol requiring enzyme-1), the major signaling pathway of endoplasmic reticulum stress, significantly decreases tumor growth and proliferation of glioma cells. To elucidate the role of IRE1- mediated glioma growth, we studied the expression of a subset genes encoding for TNF (tumor necrosis factor)- related factors and receptors and their hypoxic regulation in U87 glioma cells overexpressing dominant-negative IRE1 (dnIRE1). We demonstrated that the expression of TNFAIP1, TNFRSF10D, TNFRSF21, TNFRSF11B, TNFSF7, and LITAF genes is increased in glioma cells with modified IRE1; however, TNFRSF10B, TRADD, and TNFAIP3 is down-regulated in these cells as compared to their control counterparts. We did not find TNFRSF1A gene expression to change significantly under this experimental condition. In control glioma cells, hypoxia leads to the up-regulated expression of TNFAIP1, TNFAIP3, TRADD, and TNFRSF10D genes and the concomitant down-regulation of TNFRSF21, TNFRSF11B, and LITAF genes; while, TNFRSF10B and TNFRSF1A genes are resistant to hypoxic treatment. However, inhibition of IRE1 modifies the hypoxic regulation of LITAF, TNFRSF21, TNFRSF11B, and TRADD genes and introduces hypoxia-induced sensitivity to TNFRSF10B, TNFRSF1A, and TNFSF7 gene expressions. Furthermore, knockdown by siRNA of TNFRSF21 mRNA modifies the hypoxic effect on the IRE1-dependent rate of proliferation and cell death in U87 glioma cells. The present study demonstrates that fine-tuned manipulation of the expression of TNF-related factors and receptors directly relating to cell death and proliferation, is mediated by an effector of endoplasmic reticulum stress, IRE1, as well as by hypoxia in a gene-specific manner. Thus, inhibition of the kinase and endoribonuclease activities of IRE1 correlates with deregulation of TNF-related factors and receptors in a manner that is gene specific and thus slows tumor growth.
References
[1] Zhang K, Kaufman RJ. The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 2006; 66 (Suppl 1): S102–9. 10.1212/01.wnl.0000192306.98198.ecSearch in Google Scholar PubMed
[2] Moenner M, Pluquet O, Bouchecareilh M, Chevet E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res 2007; 67: 10631–4. 10.1158/0008-5472.CAN-07-1705Search in Google Scholar PubMed
[3] Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. J Cell Biol 2012; 197: 857-67. 10.1083/jcb.201110131Search in Google Scholar PubMed PubMed Central
[4] Pluquet O, Dejeans N, Chevet E. Watching the clock: endoplasmic reticulum-mediated control of circadian rhythms in cancer. Ann Med 2014; 46: 233-43. 10.3109/07853890.2013.874664Search in Google Scholar PubMed
[5] Chesney J, Clark J, Klarer AC, Imbert-Fernandez Y, Lane AN, Telang S. Fructose-2,6-bisphosphate synthesis by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) is required for the glycolytic response to hypoxia and tumor growth. Oncotarget 2014; 5: 6670-86. 10.18632/oncotarget.2213Search in Google Scholar PubMed PubMed Central
[6] Manié SN, Lebeau J, Chevet E. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 3. Orchestrating the unfolded protein response in oncogenesis: an update. Am J Physiol Cell Physiol 2014; 307: C901-7. 10.1152/ajpcell.00292.2014Search in Google Scholar PubMed
[7] Malhotra JD, Kaufman RJ. ER stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harb Perspect Biol 2011; 3: a004424. 10.1101/cshperspect.a004424Search in Google Scholar PubMed PubMed Central
[8] Lenihan CR, Taylor CT. The impact of hypoxia on cell death pathways. Biochem Soc Trans 2013; 41: 657–63. 10.1042/BST20120345Search in Google Scholar PubMed
[9] Hetz C, Chevet E, Harding HP. Targeting the unfolded protein response in disease. Nat Rev Drug Discov 2013; 12: 703-19. 10.1038/nrd3976Search in Google Scholar PubMed
[10] Auf G, Jabouille A, Delugin M, Guérit S, Pineau R, North S, Platonova N, Maitre M, Favereaux A, Vajkoczy P, Seno M, Bikfalvi A, Minchenko D, Minchenko O, Moenner M. High epiregulin expression in human U87 glioma cells relies on IRE1alpha and promotes autocrine growth through EGF receptor. BMC Cancer 2013; 13: 597. 10.1186/1471-2407-13-597Search in Google Scholar PubMed PubMed Central
[11] Pluquet O, Dejeans N, Bouchecareilh M, Lhomond S, Pineau R, Higa A, Delugin M, Combe C, Loriot S, Cubel G, Dugot-Senant N, Vital A, Loiseau H, Gosline SJ, Taouji S, Hallett M, Sarkaria JN, Anderson K, Wu W, Rodriguez FJ, Rosenbaum J, Saltel F, Fernandez-Zapico ME, Chevet E. Posttranscriptional regulation of PER1 underlies the oncogenic function of IREα. Cancer Res. 2013; 73: 4732–43. 10.1158/0008-5472.CAN-12-3989Search in Google Scholar PubMed PubMed Central
[12] Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, Lennon CJ, Kluger Y, Dynlacht DD. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Molecular Cell 2007; 27: 53–66. 10.1016/j.molcel.2007.06.011Search in Google Scholar PubMed
[13] Aragón T, van Anken E, Pincus D., Serafimova IM, Korennykh AV, Rubio CA, Walter P. Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature. 2009; 457: 736–40. 10.1038/nature07641Search in Google Scholar PubMed PubMed Central
[14] Drogat B, Auguste P, Nguyen DT, Bouchecareilh M, Pineau R, Nalbantoglu J, Kaufman RJ, Chevet E, Bikfalvi A, Moenner M. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Res 2007; 67: 6700–7. 10.1158/0008-5472.CAN-06-3235Search in Google Scholar PubMed
[15] Auf G, Jabouille A, Guerit S, Pineau R, Delugin M, Bouchecareilh M, Magnin N, Favereaux A, Maitre M, Gaiser T, von Deimling A, Czabanka M, Vajkoczy P, Chevet E, Bikfalvi A, Moenner M. Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci USA 2010; 107: 15553–8. 10.1073/pnas.0914072107Search in Google Scholar PubMed PubMed Central
[16] Cullen SP, Martin SJ. Fas and TRAIL ‘death receptors’ as initiators of inflammation: Implications for cancer. Semin Cell Dev Biol 2015; 39: 26-34. 10.1016/j.semcdb.2015.01.012Search in Google Scholar PubMed
[17] Benschop R, Wei T, Na S. Tumor necrosis factor receptor superfamily member 21: TNFR-related death receptor-6, DR6. Adv Exp Med Biol 2009; 647: 186-94. 10.1007/978-0-387-89520-8_13Search in Google Scholar PubMed
[18] Fares F, Azzam N, Fares B, Larsen S, Lindkaer-Jensen S. Benzene-poly-carboxylic acid complex, a novel anti-cancer agent induces apoptosis in human breast cancer cells. PLoS One 2014; 9: e85156. 10.1371/journal.pone.0085156Search in Google Scholar PubMed PubMed Central
[19] Mirzaei MR, Najafi A, Arababadi MK, Asadi MH, Mowla SJ. Altered expression of apoptotic genes in response to OCT4B1 suppression in human tumor cell lines. Tumour Biol 2014; 35: 9999-10009. 10.1007/s13277-014-2238-9Search in Google Scholar PubMed
[20] Hu R, Du Q, Yin X, Li J, Wang T and Zhang L. Agonist antibody activates death receptor 6 downstream signaling involving TRADD recruitment. FEBS Lett 2014; 588: 401-7. 10.1016/j.febslet.2013.12.010Search in Google Scholar PubMed
[21] Zeng L, Li T, Xu DC, Liu J, Mao G, Cui MZ, Fu X and Xu X. Death receptor 6 induces apoptosis not through type I or type II pathways, but via a unique mitochondria-dependent pathway by interacting with Bax protein. J Biol Chem 2012; 287: 29125-33. 10.1074/jbc.M112.362038Search in Google Scholar PubMed PubMed Central
[22] Haselmann V, Kurz A, Bertsch U, Hubner S, Olempska-Muller M, Fritsch J, Hasler R, Pickl A, Fritsche H, Annewanter F, Engler C, Fleig B, Bernt A, Roder C, Schmidt H, Gelhaus C, Hauser C, Egberts JH, Heneweer C, Rohde AM, Boger C, Knippschild U, Rocken C, Adam D, Walczak H, Schutze S, Janssen O, Wulczyn FG, Wajant H, Kalthoff H, Trauzold A. Nuclear death receptor TRAIL-R2 inhibits maturation of let-7 and promotes proliferation of pancreatic and other tumor cells. Gastroenterology 2014; 146: 278-90. 10.1053/j.gastro.2013.10.009Search in Google Scholar PubMed
[23] Li T, Su L, Lei Y, Liu X, Zhang Y, Liu X. DDIT3 and KAT2A proteins regulate TNFRSF10A and TNFRSF10B expression in endoplasmic reticulum stress-mediated apoptosis in human lung cancer cells. J Biol Chem 2015; 290: 11108-18. 10.1074/jbc.M115.645333Search in Google Scholar PubMed PubMed Central
[24] Sarhan D, D’Arcy P, Lundqvist A. Regulation of TRAIL-receptor expression by the ubiquitin-proteasome system. Int J Mol Sci 2014; 15: 18557-73. 10.3390/ijms151018557Search in Google Scholar PubMed PubMed Central
[25] von Karstedt S, Conti A, Nobis M, Montinaro A, Hartwig T, Lemke J, Legler K, Annewanter F, Campbell AD, Taraborrelli L, Grosse-Wilde A, Coy JF, El-Bahrawy MA, Bergmann F, Koschny R, Werner J, Ganten TM, Schweiger T, Hoetzenecker K, Kenessey I, Hegedüs B, Bergmann M, Hauser C, Egberts JH, Becker T, Röcken C, Kalthoff H, Trauzold A, Anderson KI, Sansom OJ, Walczak H. Cancer cell-autonomous TRAIL-R signaling promotes KRAS-driven cancer progression, invasion, and metastasis. Cancer Cell 2015; 27: 561-73. 10.1016/j.ccell.2015.02.014Search in Google Scholar PubMed PubMed Central
[26] Inoue M, Kamada H, Abe Y, Higashisaka K, Nagano K, Mukai Y, Yoshioka Y, Tsutsumi Y, Tsunoda S. Aminopeptidase P3, a new member of the TNF-TNFR2 signaling complex, induces phosphorylation of JNK1 and JNK2. J Cell Sci. 2015; 128: 656-69. Search in Google Scholar
[27] Shukla K, Sharma AK, Ward A, Will R, Hielscher T, Balwierz A, Breunig C, Münstermann E, König R, Keklikoglou I, Wiemann S. MicroRNA-30c-2-3p negatively regulates NF-κB signaling and cell cycle progression through down-regulation of TRADD and CCNE1 in breast cancer. Mol Oncol 2015; 9: 1106-19. 10.1016/j.molonc.2015.01.008Search in Google Scholar PubMed PubMed Central
[28] Trebing J, El-Mesery M, Schäfer V, Weisenberger D, Siegmund D, Silence K, Wajant H. CD70-restricted specific activation of TRAILR1 or TRAILR2 using scFv-targeted TRAIL mutants. Cell Death Dis. 2014 ; 5: e1035. 10.1038/cddis.2013.555Search in Google Scholar PubMed PubMed Central
[29] Yoshino K, Kishibe K, Nagato T, Ueda S, Komabayashi Y, Takahara M, Harabuchi Y. Expression of CD70 in nasal natural killer/T cell lymphoma cell lines and patients; its role for cell proliferation through binding to soluble CD27. Br J Haematol 2013; 160: 331-42. 10.1111/bjh.12136Search in Google Scholar PubMed
[30] Zhang X, Li X, Tan Z, Liu X, Yang C, Ding X, Hu X, Zhou J, Xiang S, Zhou C, Zhang J. MicroRNA-373 is up-regulated and targets TNFAIP1 in human gastric cancer, contributing to tumorigenesis. Oncol Lett 2013; 6: 1427-34. 10.3892/ol.2013.1534Search in Google Scholar PubMed PubMed Central
[31] Kim DM, Chung KS, Choi SJ, Jung YJ, Park SK, Han GH, Ha JS, Song KB, Choi NS, Kim HM, Won M, Seo YS. RhoB induces apoptosis via direct interaction with TNFAIP1 in HeLa cells. Int J Cancer 2009; 125: 2520-7. 10.1002/ijc.24617Search in Google Scholar PubMed
[32] da Silva CG, Minussi DC, Ferran C, Bredel M. A20 expressing tumors and anticancer drug resistance. Adv Exp Med Biol 2014; 809: 65-81. 10.1007/978-1-4939-0398-6_5Search in Google Scholar PubMed
[33] Liu J, Yang S, Wang Z, Chen X, Zhang Z. Ubiquitin ligase A20 regulates p53 protein in human colon epithelial cells. J Biomed Sci 2013; 20: 74. 10.1186/1423-0127-20-74Search in Google Scholar PubMed PubMed Central
[34] Bertolo C, Roa S, Sagardoy A, Mena-Varas M, Robles EF, Martinez-Ferrandis JI, Sagaert X, Tousseyn T, Orta A, Lossos IS, Amar S, Natkunam Y, Briones J, Melnick A, Malumbres R, Martinez-Climent JA. LITAF, a BCL6 target gene, regulates autophagy in mature B-cell Lymphomas. Br J Haematol 2013; 162: 621-30. 10.1111/bjh.12440Search in Google Scholar PubMed PubMed Central
[35] Polyak K, Xia Y, Zweier JL, Kinzler KW and Vogelstein B. A model for p53-induced apoptosis. Nature 1997; 389: 300-5. 10.1038/38525Search in Google Scholar PubMed
[36] Minchenko DO, Danilovskyi SV, Kryvdiuk IV, Bakalets TV, Lypova NM, Karbovskyi LL, Minchenko OH. Inhibition of ERN1 modifies the hypoxic regulation of the expression of TP53-related genes in U87 glioma cells. Endoplasm Reticul Stress Dis 2014; 1: 18-26. 10.2478/ersc-2014-0001Search in Google Scholar
[37] Bochkov VN, Philippova M, Oskolkova O, Kadl A, Furnkranz A, Karabeg E, Breuss J, Minchenko OH, Mechtcheriakova D, Hohensinner P, Rychli K, Wojta J, Resink T, Binder BR, Leitinger N. Oxidized phospholipids stimulate angiogenesis via induction of VEGF, IL-8, COX-2 and ADAMTS-1 metalloprotease, implicating a novel role for lipid oxidation in progression and destabilization of atherosclerotic lesions. Circ Res 2006; 99: 900-8. 10.1161/01.RES.0000245485.04489.eeSearch in Google Scholar PubMed
[38] Minchenko O.H., Tsymbal D.O., Moenner M., Minchenko D.O., Kovalevska O.V., Lypova N.M. Inhibition of the endoribonuclease of ERN1 signaling enzyme affects the expression of proliferation-related genes in U87 glioma cells. Endoplasm Reticul Stress Dis 2015; 2: 18-29. Search in Google Scholar
[39] Jang,J.Y., Jeon,Y.K., Choi,Y. and Kim,C.W. Short-hairpin RNA-induced suppression of adenine nucleotide translocase-2 in breast cancer cells restores their susceptibility to TRAILinduced apoptosis by activating JNK and modulating TRAIL receptor expression. Mol Cancer 2010; 9: 262. 10.1186/1476-4598-9-262Search in Google Scholar PubMed PubMed Central
[40] Venza M, Visalli M, Catalano T, Fortunato C, Oteri R, Teti D and Venza I. Impact of DNA methyltransferases on the epigenetic regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor expression in malignant melanoma. Biochem Biophys Res Commun 2013; 441: 743-50. 10.1016/j.bbrc.2013.10.114Search in Google Scholar PubMed
[41] Ratzinger G, Mitteregger S, Wolf B, Berger R, Zelger B, Weinlich G, Fritsch P, Goebel G, Fiegl H. Association of TNFRSF10D DNA-methylation with the survival of melanoma patients. Int J Mol Sci 2014; 15: 11984-95. 10.3390/ijms150711984Search in Google Scholar PubMed PubMed Central
[42] Tian,X., Ye,J., Alonso-Basanta,M., Hahn,S.M., Koumenis,C. and Dorsey,J.F. Modulation of CCAAT/enhancer binding protein homologous protein (CHOP)-dependent DR5 expression by nelfinavir sensitizes glioblastoma multiforme cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Biol Chem 2011; 286: 29408-16. 10.1074/jbc.M110.197665Search in Google Scholar PubMed PubMed Central
[43] Ciechomska IA, Gabrusiewicz K, Szczepankiewicz AA, Kaminska B. Endoplasmic reticulum stress triggers autophagy in malignant glioma cells undergoing cyclosporine a-induced cell death. Oncogene 2013; 32: 1518-29. 10.1038/onc.2012.174Search in Google Scholar PubMed
[44] Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 2008; 8: 705-13. 10.1038/nrc2468Search in Google Scholar PubMed
[45] Minchenko OH, Tsymbal DO, Minchenko DO, Kovalevska OV, Karbovskyi LL, Bikfalvi A. Inhibition of ERN1 signaling enzyme affects hypoxic regulation of the expression of E2F8, EPAS1, HOXC6, ATF3, TBX3 and FOXF1 genes in U87 glioma cells. Ukr Biochem J 2015; 87(2): 76-87. 10.15407/ubj87.02.076Search in Google Scholar
[46] Backer MV, Backer JM, Chinnaiyan P. Targeting the unfolded protein response in cancer therapy. Methods Enzymol. 2011; 491: 37–56. 10.1016/B978-0-12-385928-0.00003-1Search in Google Scholar PubMed
[47] Johnson GG, White MC, Grimaldi M. Stressed to death: targeting endoplasmic reticulum stress response induced apoptosis in gliomas. Curr Pharm Des. 2011; 17: 284-92. 10.2174/138161211795049660Search in Google Scholar PubMed PubMed Central
[48] Danilovskyi S.V., Minchenko D.O., Karbovskyi L.L., O.S. Moliavko, Kovalevska O.V., Minchenko O.H. ERN1 knockdown modifies the hypoxic regulation of TP53, MDM2, USP7 and PERP gene expressions in U87 glioma cells. Ukr Biochem J 2014; 86: 90-102. 10.15407/ubj86.04.090Search in Google Scholar
© 2016 Oleksandr H. Minchenko et al.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.