Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 19, 2016

IRE-1α regulates expression of ubiquitin specific peptidases during hypoxic response in U87 glioma cells

  • Oleksandr H. Minchenko , Dariia O. Tsymbal , Dmytro O. Minchenko , Olena O. Riabovol , Oleh V. Halkin and Oksana O. Ratushna
From the journal Cell Pathology


IRE-1α (inositol requiring enzyme-1α), the most evolutionarily conserved of the endoplasmic reticulum stress signaling pathways, is highly implicated in sustaining the proliferation of glioma cells and subsequent tumor growth, which is decreased by the inhibition of IRE-1α. To explore the IRE-1α mediated regulation of ubiquitin system in glioma cells, the expression of a subset of ubiquitin specific peptidases (USP) and of ubiquitin activating enzyme E1-like protein/autophagy related 7 (GSA7/ATG7) genes was studied, during hypoxic stress in wild type and U87 glioma cells with inhibited IRE-1α. Hypoxic treatment of wild type glioma cells leads to the up-regulation of USP25 and the concomitant downregulation of USP1, USP10, USP14, and GSA7 genes. USP4 and USP22 genes expression did not significantly change with hypoxic treatment. Inhibition of IRE-1α activity led to up-regulation of USP1, USP4, USP10, USP22, and USP25, while USP14 and GSA7 genes were down-regulated. Therefore, IRE-1α activity modifies substrate-targeting specificity to proteasome during hypoxic stress, which in turn can affect cell survival. Inhibition of IRE-1α correlates directly with deregulation of ubiquitin specific peptidases and GSA7 in a fashion that ultimately slows tumor growth.


[1] Kessler BM, Edelmann MJ. PTMs in conversation: activity and function of deubiquitinating enzymes regulated via post-translational modifications. Cell Biochem Biophys 2011; 60: 21-38. 10.1007/s12013-011-9176-6Search in Google Scholar PubMed PubMed Central

[2] Satija YK, Bhardwaj A, Das S. A portrayal of E3 ubiquitin ligases and deubiquitylases in cancer. Int J Cancer 2013; 133: 2759-68. 10.1002/ijc.28129Search in Google Scholar PubMed

[3] Li J, Tan Q, Yan M, Liu L, Lin H, Zhao F, Bao G, Kong H, Ge C, Zhang F, Yu T, Li J, He X, Yao M. miRNA-200c inhibits invasion and metastasis of human non-small cell lung cancer by directly targeting ubiquitin specific peptidase 25. Mol Cancer 2014; 13: 166. 10.1186/1476-4598-13-166Search in Google Scholar PubMed PubMed Central

[4] Mojsa B, Lassot I, Desagher S. Mcl-1 ubiquitination: unique regulation of an essential survival protein. Cells 2014; 3: 418-37. 10.3390/cells3020418Search in Google Scholar PubMed PubMed Central

[5] Zhang J, Zhang X, Xie F, Zhang Z, van Dam H, Zhang L, Zhou F. The regulation of TGF-β/SMAD signaling by protein deubiquitination. Protein Cell 2014; 5: 503-17. 10.1007/s13238-014-0058-8Search in Google Scholar PubMed PubMed Central

[6] Danilovskyi S.V., Minchenko D.O., Karbovskyi L.L., O.S. Moliavko, Kovalevska O.V., Minchenko O.H. ERN1 knockdown modifies the hypoxic regulation of TP53, MDM2, USP7 and PERP gene expressions in U87 glioma cells. Ukr Biochem J 2014; 86: 90-102. 10.15407/ubj86.04.090Search in Google Scholar

[7] Kashiwaba S, Kanao R, Masuda Y, Kusumoto-Matsuo R, Hanaoka F, Masutani C. USP7 is a suppressor of PCNA ubiquitination and oxidative-stress-induced mutagenesis in human cells. Cell Rep 2015; 13: 2072-80. 10.1016/j.celrep.2015.11.014Search in Google Scholar PubMed

[8] Zhiqiang Z, Qinghui Y, Yongqiang Z, Jian Z, Xin Z, Haiying M and Yuepeng G. USP1 regulates AKT phosphorylation by modulating the stability of PHLPP1 in lung cancer cells. J Cancer Res Clin Oncol 2012; 138: 1231-8. 10.1007/s00432-012-1193-3Search in Google Scholar PubMed

[9] Lee JK, Chang N, Yoon Y, Yang H, Cho H, Kim E, Shin Y, Kang W, Oh YT, Mun GI, Joo KM, Nam DH, Lee J. USP1 targeting impedes GBM growth by inhibiting stem cell maintenance and radioresistance. Neuro Oncol 2016; 18: 37-47. 10.1093/neuonc/nov091Search in Google Scholar PubMed PubMed Central

[10] Villamil MA, Liang Q, Chen J, Choi YS, Hou S, Lee KH and Zhuang Z. Serine phosphorylation is critical for the activation of ubiquitin-specific protease 1 and its interaction with WD40-repeat protein UAF1. Biochemistry 2012; 51: 9112-23. 10.1021/bi300845sSearch in Google Scholar PubMed PubMed Central

[11] Garcia-Santisteban I, Zorroza K and Rodriguez JA. Two nuclear localization signals in USP1 mediate nuclear import of the USP1/UAF1 complex. PLoS ONE 2012; 7: E38570. 10.1371/journal.pone.0038570Search in Google Scholar PubMed PubMed Central

[12] Li Z, Hao Q, Luo J, Xiong J, Zhang S, Wang T, Bai L, Wang W, Chen M, Wang W, Gu L, Lv K, Chen J. USP4 inhibits p53 and NF-κB through deubiquitinating and stabilizing HDAC2. Oncogene 2016; 35: 2902-12. 10.1038/onc.2015.349Search in Google Scholar PubMed PubMed Central

[13] Yun SI, Kim HH, Yoon JH, Park WS, Hahn MJ, Kim HC, Chung CH, Kim KK. Ubiquitin specific protease 4 positively regulates the WNT/β-catenin signaling in colorectal cancer. Mol Oncol 2015; 9: 1834-51. 10.1016/j.molonc.2015.06.006Search in Google Scholar PubMed PubMed Central

[14] Zhang J, Zhang X, Xie F, Zhang Z, van Dam H, Zhang L, Zhou F. The regulation of TGF-β/SMAD signaling by protein deubiquitination. Protein Cell 2014; 5: 503-17. 10.1007/s13238-014-0058-8Search in Google Scholar PubMed PubMed Central

[15] Liu H, Xu XF, Zhao Y, Tang MC, Zhou YQ, Lu J, Gao FH. MicroRNA-191 promotes pancreatic cancer progression by targeting USP10. Tumour Biol 2014; 35: 12157-63. 10.1007/s13277-014-2521-9Search in Google Scholar PubMed

[16] Lin Z, Yang H, Tan C, Li J, Liu Z, Quan Q, Kong S, Ye J, Gao B, Fang D. USP10 antagonizes c-Myc transcriptional activation through SIRT6 stabilization to suppress tumor formation. Cell Rep 2013; 5: 1639-49. 10.1016/j.celrep.2013.11.029Search in Google Scholar PubMed PubMed Central

[17] Tang B, Tang F, Li B, Yuan S, Xu Q, Tomlinson S, Jin J, Hu W, He S. High USP22 expression indicates poor prognosis in hepatocellular carcinoma. Oncotarget 2015; 6: 12654-67. 10.18632/oncotarget.3705Search in Google Scholar PubMed PubMed Central

[18] Liu YL, Zheng J, Tang LJ, Han W, Wang JM, Liu DW, Tian QB. The deubiquitinating enzyme activity of USP22 is necessary for regulating HeLa cell growth. Gene 2015; 572: 49-56. 10.1016/j.gene.2015.06.075Search in Google Scholar PubMed

[19] Ao N, Liu Y, Bian X, Feng H, Liu Y. Ubiquitin-specific peptidase 22 inhibits colon cancer cell invasion by suppressing the signal transducer and activator of transcription 3/matrix metalloproteinase 9 pathway. Mol Med Rep 2015; 12: 2107-13. 10.3892/mmr.2015.3661Search in Google Scholar PubMed

[20] Blount JR, Burr AA, Denuc A, Marfany G, Todi SV. Ubiquitin-specific protease 25 functions in endoplasmic reticulum-associated degradation. PLoS One 2012; 7: e36542. 10.1371/journal.pone.0036542Search in Google Scholar PubMed PubMed Central

[21] Kim S, Lee D, Lee J, Song H, Kim HJ, Kim KT. Vaccinia-related kinase 2 controls the stability of the eukaryotic chaperonin TRiC/CCT by inhibiting the deubiquitinating enzyme USP25. Mol Cell Biol. 2015; 35: 1754-62. 10.1128/MCB.01325-14Search in Google Scholar PubMed PubMed Central

[22] Wang Y, Wang J, Zhong J, Deng Y, Xi Q, He S, Yang S, Jiang L, Huang M, Tang C, Liu R. Ubiquitin-specific protease 14 (USP14) regulates cellular proliferation and apoptosis in epithelial ovarian cancer. Med Oncol 2015; 32: 379. 10.1007/s12032-014-0379-8Search in Google Scholar PubMed

[23] Xu D, Shan B, Lee BH, Zhu K, Zhang T, Sun H, Liu M, Shi L, Liang W, Qian L, Xiao J, Wang L, Pan L, Finley D, Yuan J. Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system. Elife 2015; 4: e10510. 10.7554/eLife.10510Search in Google Scholar PubMed PubMed Central

[24] D’Arcy P, Wang X, Linder S. Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol Ther 2015; 147: 32-54. 10.1016/j.pharmthera.2014.11.002Search in Google Scholar PubMed

[25] Galluzzi L, Bravo-San Pedro JM, Kroemer G. Autophagy mediates tumor suppression via cellular senescence. Trends Cell Biol 2016; 26: 1-3. 10.1016/j.tcb.2015.11.001Search in Google Scholar PubMed

[26] Moenner M, Pluquet O, Bouchecareilh M, Chevet E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res 2007; 67: 10631–4. 10.1158/0008-5472.CAN-07-1705Search in Google Scholar PubMed

[27] Malhotra JD, Kaufman RJ. ER stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harb Perspect Biol 2011; 3: a004424. 10.1101/cshperspect.a004424Search in Google Scholar PubMed PubMed Central

[28] Pluquet O, Dejeans N, Chevet E. Watching the clock: endoplasmic reticulum-mediated control of circadian rhythms in cancer. Ann Med 2014; 46: 233-43. 10.3109/07853890.2013.874664Search in Google Scholar PubMed

[29] Auf G, Jabouille A, Guerit S, Pineau R, Delugin M, Bouchecareilh M, Magnin N, Favereaux A, Maitre M, Gaiser T, von Deimling A, Czabanka M, Vajkoczy P, Chevet E, Bikfalvi A, Moenner M. Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci USA 2010; 107: 15553–8. 10.1073/pnas.0914072107Search in Google Scholar PubMed PubMed Central

[30] Lenihan CR, Taylor CT. The impact of hypoxia on cell death pathways. Biochem Soc Trans 2013; 41: 657–63. 10.1042/BST20120345Search in Google Scholar PubMed

[31] Chesney J, Clark J, Klarer AC, Imbert-Fernandez Y, Lane AN, Telang S. Fructose-2,6-bisphosphate synthesis by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) is required for the glycolytic response to hypoxia and tumor growth. Oncotarget 2014; 5: 6670-86. 10.18632/oncotarget.2213Search in Google Scholar PubMed PubMed Central

[32] Hetz C, Chevet E, Harding HP. Targeting the unfolded protein response in disease. Nat Rev Drug Discov 2013; 12: 703-19. 10.1038/nrd3976Search in Google Scholar PubMed

[33] Minchenko O.H., Tsymbal D.O., Moenner M., Minchenko D.O., Kovalevska O.V., Lypova N.M. Inhibition of the endoribonuclease of ERN1 signaling enzyme affects the expression of proliferation-related genes in U87 glioma cells. Endoplasm Reticul Stress Dis 2015; 2: 18-29. Search in Google Scholar

[34] Manié SN, Lebeau J, Chevet E. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 3. Orchestrating the unfolded protein response in oncogenesis: an update. Am J Physiol Cell Physiol 2014; 307: C901-7. 10.1152/ajpcell.00292.2014Search in Google Scholar PubMed

[35] Minchenko OH, Kryvdiuk IV, Minchenko DO, Riabovol OO, Halkin OV. Inhibition of IRE1 signaling affects expression of a subset genes encoding for TNF-related factors and receptors and modifies their hypoxic regulation in U87 glioma cells. Endoplasm Reticul Stress Dis 2016; 3: 1-15. 10.1515/ersc-2016-0001Search in Google Scholar

[36] Auf G, Jabouille A, Delugin M, Guérit S, Pineau R, North S, Platonova N, Maitre M, Favereaux A, Vajkoczy P, Seno M, Bikfalvi A, Minchenko D, Minchenko O, Moenner M. High epiregulin expression in human U87 glioma cells relies on IRE1alpha and promotes autocrine growth through EGF receptor. BMC Cancer 2013; 13: 597. 10.1186/1471-2407-13-597Search in Google Scholar PubMed PubMed Central

[37] Minchenko DO, Danilovskyi SV, Kryvdiuk IV, Bakalets TV, Lypova NM, Karbovskyi LL, Minchenko OH. Inhibition of ERN1 modifies the hypoxic regulation of the expression of TP53-related genes in U87 glioma cells. Endoplasm Reticul Stress Dis 2014; 1: 18-26. 10.2478/ersc-2014-0001Search in Google Scholar

[38] Andrews NC, Faller DV. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucl Acid Res 1991; 19: 2499. 10.1093/nar/19.9.2499Search in Google Scholar PubMed PubMed Central

[39] Minchenko OH, Opentanova IL, Minchenko DO, Ogura T, Esumi H. Hypoxia induces transcription of 6-phosphofructo-2-kinase/ fructose-2,6-bisphosphatase 4 gene via hypoxia-inducible factor-1alpha activation. FEBS Lett 2004; 576: 14-20. 10.1016/j.febslet.2004.08.053Search in Google Scholar PubMed

[40] Bochkov VN, Philippova M, Oskolkova O, Kadl A, Furnkranz A, Karabeg E, Breuss J, Minchenko OH, Mechtcheriakova D, Hohensinner P, Rychli K, Wojta J, Resink T, Binder BR, Leitinger N. Oxidized phospholipids stimulate angiogenesis via induction of VEGF, IL-8, COX-2 and ADAMTS-1 metalloprotease, implicating a novel role for lipid oxidation in progression and destabilization of atherosclerotic lesions. Circ Res 2006; 99: 900-8. 10.1161/01.RES.0000245485.04489.eeSearch in Google Scholar PubMed

[41] Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. J Cell Biol 2012; 197: 857-67. 10.1083/jcb.201110131Search in Google Scholar PubMed PubMed Central

[42] Hou X, Wang L, Zhang L, Pan X, Zhao W. Ubiquitin-specific protease 4 promotes TNF-alpha-induced apoptosis by deubiquitination of RIP1 in head and neck squamous cell carcinoma. FEBS Lett 2013; 587: 311-6. 10.1016/j.febslet.2012.12.016Search in Google Scholar PubMed

[43] Sun XX, Challagundla KB, Dai MS. Positive regulation of p53 stability and activity by the deubiquitinating enzyme otubain 1. EMBO J 2012; 31: 576-92. 10.1038/emboj.2011.434Search in Google Scholar PubMed PubMed Central

[44] Hu J, Yang D, Zhang H, Liu W, Zhao Y, Lu H, Meng Q, Pang H, Chen X, Liu Y, Cai L. USP22 promotes tumor progression and induces epithelial-mesenchymal transition in lung adenocarcinoma. Lung Cancer 2015; 88: 239-45. 10.1016/j.lungcan.2015.02.019Search in Google Scholar PubMed

[45] Xiong J, Gong Z, Zhou X, Liu J, Jiang HE, Wu P, Li W. p38 mitogen-activated protein kinase inhibits USP22 transcription in HeLa cells. Biomed Rep 2015; 3: 461-7. 10.3892/br.2015.450Search in Google Scholar PubMed PubMed Central

[46] Lévy J, Cacheux W, Bara MA, L’Hermitte A, Lepage P, Fraudeau M, Trentesaux C, Lemarchand J, Durand A, Crain AM, Marchiol C, Renault G, Dumont F, Letourneur F, Delacre M, Schmitt A, Terris B, Perret C, Chamaillard M, Couty JP, Romagnolo B. Intestinal inhibition of Atg7 prevents tumour initiation through a microbiome-influenced immune response and suppresses tumour growth. Nat Cell Biol 2015; 17: 1062-73. 10.1038/ncb3206Search in Google Scholar PubMed

[47] Minchenko OH, Tsymbal DO, Minchenko DO, Kovalevska OV, Karbovskyi LL, Bikfalvi A. Inhibition of ERN1 signaling enzyme affects hypoxic regulation of the expression of E2F8, EPAS1, HOXC6, ATF3, TBX3 and FOXF1 genes in U87 glioma cells. Ukr Biochem J 2015; 87(2): 76-87. 10.15407/ubj87.02.076Search in Google Scholar

[48] Backer MV, Backer JM, Chinnaiyan P. Targeting the unfolded protein response in cancer therapy. Methods Enzymol. 2011; 491: 37–56. 10.1016/B978-0-12-385928-0.00003-1Search in Google Scholar PubMed

[49] Johnson GG, White MC, Grimaldi M. Stressed to death: targeting endoplasmic reticulum stress response induced apoptosis in gliomas. Curr Pharm Des. 2011; 17: 284-92. 10.2174/138161211795049660Search in Google Scholar PubMed PubMed Central

Received: 2015-12-31
Accepted: 2016-06-28
Published Online: 2016-07-19
Published in Print: 2016-01-01

© 2016 Oleksandr H. Minchenko et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 8.6.2023 from
Scroll to top button