Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 26, 2018

Stress-sensing and regulatory mechanism of the endoplasmic-stress sensors Ire1 and PERK

  • Yuki Ishiwata-Kimata , Giang Quynh Le and Yukio Kimata EMAIL logo
From the journal Cell Pathology

Abstract

Ire1 and its family protein PERK are endoplasmic reticulum (ER)-stress sensors that initiate cellular responses against ER accumulation of unfolded proteins. As reviewed in this article, many publications describe molecular mechanisms by which yeast Ire1 senses ER conditions and gets regulated. We also cover recent studies which reveal that mammalian Ire1 (IRE1α) and PERK are controlled in a similar but not exactly the same manner. ER-located molecular chaperone BiP captures these ER-stress sensors and suppresses their activity. Intriguingly, Ire1 is associated with BiP not as a chaperone substrate, but as a unique ligand. Unfolded proteins accumulated in the ER promote dissociation of the Ire1-BiP complex. Moreover, Ire1 is directly bound with unfolded proteins, leading to its cluster formation and potent activation. PERK also captures unfolded proteins and then forms self-oligomers. Meanwhile, membrane-lipid aberrancy is likely to activate these ER-stress sensors independently of ER accumulation of unfolded proteins. In addition, there exist a number of reports that touch on other factors that control activity of these ER-stress sensors. Such a multiplicity of regulatory mechanisms for these ER-stress sensors is likely to contribute to fine tuning of their activity.

References

[1] Kozutsumi Y., Segal M., Normington K., Gething M.J., Sambrook J., The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins, Nature, 1988, 332, 462-464; DOI: 10.1038/332462a010.1038/332462a0Search in Google Scholar

[2] Cox J.S., Shamu C.E., Walter P., Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase, Cell, 1993, 73, 1197-120610.1016/0092-8674(93)90648-ASearch in Google Scholar

[3] Mori K., Ma W., Gething M.J., Sambrook J., A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus, Cell, 1993, 74, 743-75610.1016/0092-8674(93)90521-QSearch in Google Scholar

[4] Shamu C.E., Walter P., Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus, EMBO J., 1996, 15, 3028-303910.1002/j.1460-2075.1996.tb00666.xSearch in Google Scholar

[5] Sidrauski C., Walter P., The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response, Cell, 1997, 90, 1031-103910.1016/S0092-8674(00)80369-4Search in Google Scholar

[6] Cox J.S., Walter P., A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response, Cell, 1996, 87, 391-40410.1016/S0092-8674(00)81360-4Search in Google Scholar

[7] Travers K.J., Patil C.K., Wodicka L., Lockhart D.J., Weissman J.S., Walter P., Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation, Cell, 2000, 101, 249-25810.1016/S0092-8674(00)80835-1Search in Google Scholar

[8] Kimata Y., Ishiwata-Kimata Y., Yamada S., Kohno K., Yeast unfolded protein response pathway regulates expression of genes for anti-oxidative stress and for cell surface proteins, Genes Cells, 2006, 11, 59-69; DOI: 10.1111/j.1365-2443.2005.00921.x10.1111/j.1365-2443.2005.00921.xSearch in Google Scholar PubMed

[9] Fordyce P.M., Pincus D., Kimmig P., Nelson C.S., El-Samad H., Walter P. et al., Basic leucine zipper transcription factor Hac1 binds DNA in two distinct modes as revealed by microfluidic analyses, Proc. Natl. Acad. Sci. USA, 2012, 109, E3084-E3093; DOI: 10.1073/pnas.121245710910.1073/pnas.1212457109Search in Google Scholar PubMed PubMed Central

[10] Kimmig P., Diaz M., Zheng J., Williams C.C., Lang A., Aragon T. et al., The unfolded protein response in fission yeast modulates stability of select mRNAs to maintain protein homeostasis, eLife, 2012, 1, e00048; DOI: 10.7554/eLife.0004810.7554/eLife.00048Search in Google Scholar PubMed PubMed Central

[11] Mishiba K., Nagashima Y., Suzuki E., Hayashi N., Ogata Y., Shimada Y. et al., Defects in IRE1 enhance cell death and fail to degrade mRNAs encoding secretory pathway proteins in the Arabidopsis unfolded protein response, Proc. Natl. Acad. Sci. USA, 2013, 110, 5713-5718; DOI: 10.1073/pnas.121904711010.1073/pnas.1219047110Search in Google Scholar

[12] Maurel M., Chevet E., Tavernier J., Gerlo S., Getting RIDD of RNA: IRE1 in cell fate regulation, Trends Biochem. Sci., 2014, 39, 245-254; DOI: 10.1016/j.tibs.2014.02.00810.1016/j.tibs.2014.02.008Search in Google Scholar

[13] Yoshida H., Matsui T., Yamamoto A., Okada T., Mori K., XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor, Cell, 2001, 107, 881-89110.1016/S0092-8674(01)00611-0Search in Google Scholar

[14] Calfon M., Zeng H., Urano F., Till J.H., Hubbard S.R., Harding H.P. et al., IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA, Nature, 2002, 415, 92-96; DOI: 10.1038/415092a10.1038/415092aSearch in Google Scholar PubMed

[15] Hollien J., Weissman J.S., Decay of endoplasmic reticulumlocalized mRNAs during the unfolded protein response, Science, 2006, 313, 104-107; DOI: 10.1126/science.112963110.1126/science.1129631Search in Google Scholar PubMed

[16] Han D., Lerner A.G., Vande Walle L., Upton J.P., Xu W., Hagen A. et al., IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates, Cell, 2009, 138, 562-575; DOI: 10.1016/j.cell.2009.07.01710.1016/j.cell.2009.07.017Search in Google Scholar PubMed PubMed Central

[17] Upton J.P., Wang L., Han D., Wang E.S., Huskey N.E., Lim L. et al., IRE1alpha cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2, Science, 2012, 338, 818-822; 10.1126/science.122619110.1126/science.1226191Search in Google Scholar PubMed PubMed Central

[18] Imagawa Y., Hosoda A., Sasaka S., Tsuru A., Kohno K., RNase domains determine the functional difference between IRE1alpha and IRE1beta, FEBS Lett., 2008, 582, 656-660; DOI: 10.1016/j.febslet.2008.01.03810.1016/j.febslet.2008.01.038Search in Google Scholar PubMed

[19] Nakamura D., Tsuru A., Ikegami K., Imagawa Y., Fujimoto N., Kohno K., Mammalian ER stress sensor IRE1beta specifically down-regulates the synthesis of secretory pathway proteins, FEBS Lett., 2011, 585, 133-138; DOI: 10.1016/j.febslet.2010.12.00210.1016/j.febslet.2010.12.002Search in Google Scholar PubMed

[20] Tsuru A., Fujimoto N., Takahashi S., Saito M., Nakamura D., Iwano M. et al., Negative feedback by IRE1beta optimizes mucin production in goblet cells, Proc. Natl. Acad. Sci. USA, 2013, 110, 2864-2869; DOI: 10.1073/pnas.121248411010.1073/pnas.1212484110Search in Google Scholar PubMed PubMed Central

[21] Mori K., Tripartite management of unfolded proteins in the endoplasmic reticulum, Cell, 2000, 101, 451-45410.1016/S0092-8674(00)80855-7Search in Google Scholar

[22] Yoshida H., Okada T., Haze K., Yanagi H., Yura T., Negishi M. et al., ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response, Mol. Cell. Biol., 2000, 20, 6755-676710.1128/MCB.20.18.6755-6767.2000Search in Google Scholar

[23] Ye J., Rawson R.B., Komuro R., Chen X., Dave U.P., Prywes R. et al., ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs, Mol. Cell, 2000, 6, 1355-1356410.1016/S1097-2765(00)00133-7Search in Google Scholar

[24] Harding H.P., Zhang Y., Ron D., Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase, Nature, 1999, 397, 271-274; DOI: 10.1038/1672910.1038/16729Search in Google Scholar

[25] Harding H.P., Novoa I., Zhang Y., Zeng H., Wek R., Schapira M. et al., Regulated translation initiation controls stress-induced gene expression in mammalian cells, Mol. Cell, 2000, 6, 1099-110810.1016/S1097-2765(00)00108-8Search in Google Scholar

[26] Wu H., Ng B.S., Thibault G., Endoplasmic reticulum stress response in yeast and humans, Biosci. Rep., 2014, 34, e00118; DOI: 10.1042/BSR2014005810.1042/BSR20140058Search in Google Scholar PubMed PubMed Central

[27] Hetz C., Papa F.R., The Unfolded Protein Response and Cell Fate Control, Mol. Cell, 2018, 69, 169-181; DOI: 10.1016/j. molcel.2017.06.017Search in Google Scholar

[28] Kimata Y., Oikawa D., Shimizu Y., Ishiwata-Kimata Y., Kohno K., A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1, J. Cell Biol., 2004, 167, 445-456; DOI: 10.1083/jcb.20040515310.1083/jcb.200405153Search in Google Scholar PubMed PubMed Central

[29] Oikawa D., Kimata Y., Takeuchi M., Kohno K., An essential dimer-forming subregion of the endoplasmic reticulum stress sensor Ire1, Biochem. J., 2005, 391, 135-142; DOI: 10.1042/BJ2005064010.1042/BJ20050640Search in Google Scholar PubMed PubMed Central

[30] Credle J.J., Finer-Moore J.S., Papa F.R., Stroud R.M., Walter P., On the mechanism of sensing unfolded protein in the endoplasmic reticulum, Proc. Natl. Acad. Sci. U S A, 2005, 102, 18773-18784; DOI: 10.1073/pnas.050948710210.1073/pnas.0509487102Search in Google Scholar PubMed PubMed Central

[31] Mathuranyanon R., Tsukamoto T., Takeuchi A., Ishiwata-Kimata Y., Tsuchiya Y., Kohno K. et al., Tight regulation of the unfolded protein sensor Ire1 by its intramolecularly antagonizing subdomain, J. Cell Sci., 2015, 128, 1762-1772; DOI: 10.1242/jcs.16411110.1242/jcs.164111Search in Google Scholar PubMed PubMed Central

[32] Zheng X., Krakowiak J., Patel N., Beyzavi A., Ezike J., Khalil A.S. et al., Dynamic control of Hsf1 during heat shock by a chaperone switch and phosphorylation, eLife, 2016, 5; DOI: 10.7554/eLife.1863810.7554/eLife.18638Search in Google Scholar PubMed PubMed Central

[33] Kohno K., Normington K., Sambrook J., Gething M.J., Mori K., The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum, Mol. Cell. Biol., 1993, 13, 877-89010.1128/mcb.13.2.877-890.1993Search in Google Scholar PubMed PubMed Central

[34] Okamura K., Kimata Y., Higashio H., Tsuru A., Kohno K., Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast, Biochem. Biophys. Res. Commun., 2000, 279, 445-450; DOI: 10.1006/bbrc.2000.398710.1006/bbrc.2000.3987Search in Google Scholar PubMed

[35] Kimata Y., Kimata Y.I., Shimizu Y., Abe H., Farcasanu I.C., Takeuchi M. et al., Genetic evidence for a role of BiP/Kar2 that regulates Ire1 in response to accumulation of unfolded proteins, Mol. Biol. Cell, 2003, 14, 2559-2569; DOI: 10.1091/mbc.E02-11-070810.1091/mbc.e02-11-0708Search in Google Scholar PubMed PubMed Central

[36] Pincus D., Chevalier M.W., Aragon T., van Anken E., Vidal S.E., El-Samad H. et al., BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response, PLoS Biol., 2010, 8, e1000415; DOI: 10.1371/journal.pbio.100041510.1371/journal.pbio.1000415Search in Google Scholar PubMed PubMed Central

[37] Bertolotti A., Zhang Y., Hendershot L.M., Harding H.P., Ron D., Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response, Nat. Cell Biol., 2000, 2, 326-332; DOI: 10.1038/3501401410.1038/35014014Search in Google Scholar PubMed

[38] Ma K., Vattem K.M., Wek R.C., Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress, J. Biol. Chem., 2002, 277, 18728-18735; DOI: 10.1074/jbc.M20090320010.1074/jbc.M200903200Search in Google Scholar PubMed

[39] Oikawa D., Kimata Y., Kohno K., Iwawaki T., Activation of mammalian IRE1alpha upon ER stress depends on dissociation of BiP rather than on direct interaction with unfolded proteins, Exp. Cell Res., 2009, 315, 2496-2504; DOI: 10.1016/j. yexcr.2009.06.009Search in Google Scholar

[40] Carrara M., Prischi F., Nowak P.R., Kopp M.C., Ali M.M., Noncanonical binding of BiP ATPase domain to Ire1 and Perk is dissociated by unfolded protein CH1 to initiate ER stress signaling, eLife, 2015, 4; DOI: 10.7554/eLife.0352210.7554/eLife.03522Search in Google Scholar PubMed PubMed Central

[41] Amin-Wetzel N., Saunders R.A., Kamphuis M.J., Rato C., Preissler S., Harding H.P. et al., A J-Protein Co-chaperone Recruits BiP to monomerize IRE1 and repress the unfolded protein response, Cell, 2017, 171, 1625-1637; DOI: 10.1016/j.cell.2017.10.04010.1016/j.cell.2017.10.040Search in Google Scholar PubMed PubMed Central

[42] Mayer M.P., Hsp70 chaperone dynamics and molecular mechanism, Trends Biochem. Sci., 2013, 38, 507-514; DOI: 10.1016/j.tibs.2013.08.00110.1016/j.tibs.2013.08.001Search in Google Scholar PubMed

[43] Todd-Corlett A., Jones E., Seghers C., Gething M.J., Lobe IB of the ATPase domain of Kar2p/BiP interacts with Ire1p to negatively regulate the unfolded protein response in Saccharomyces cerevisiae, J. Mol. Biol., 2007, 367, 770-787; DOI: 10.1016/j.jmb.2007.01.00910.1016/j.jmb.2007.01.009Search in Google Scholar PubMed

[44] Kimata Y., Ishiwata-Kimata Y., Ito T., Hirata A., Suzuki T., Oikawa D. et al., Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins, J. Cell Biol., 2007, 179, 75-86; DOI: 10.1083/jcb.20070416610.1083/jcb.200704166Search in Google Scholar PubMed PubMed Central

[45] Gardner B.M., Walter P., Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response, Science, 2011, 333, 1891-1894; DOI: 10.1126/science.120912610.1126/science.1209126Search in Google Scholar PubMed PubMed Central

[46] Promlek T., Ishiwata-Kimata Y., Shido M., Sakuramoto M., Kohno K., Kimata Y., Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways, Mol. Biol. Cell, 2011, 22, 3520-3532; DOI: 10.1091/mbc.E11-04-029510.1091/mbc.e11-04-0295Search in Google Scholar

[47] Zhou J., Liu C.Y., Back S.H., Clark R.L., Peisach D., Xu Z. et al., The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response, Proc. Natl. Acad. Sci. USA, 2006, 103, 14343-14348; DOI: 10.1073/pnas.060648010310.1073/pnas.0606480103Search in Google Scholar PubMed PubMed Central

[48] Karagoz G.E., Acosta-Alvear D., Nguyen H.T., Lee C.P., Chu F., Walter P., An unfolded protein-induced conformational switch activates mammalian IRE1, eLife, 2017, 6; DOI: 10.7554/eLife.3070010.7554/eLife.30700Search in Google Scholar PubMed PubMed Central

[49] Sundaram A., Appathurai S., Plumb R., Mariappan M., Dynamic changes in complexes of IRE1alpha, PERK, and ATF6alpha during endoplasmic reticulum stress, Mol. Biol. Cell, 2018, 29, 1376-1388; DOI: 10.1091/mbc.E17-10-059410.1091/mbc.E17-10-0594Search in Google Scholar PubMed PubMed Central

[50] Wang P., Li J., Sha B., The ER stress sensor PERK luminal domain functions as a molecular chaperone to interact with misfolded proteins, Acta Crystallogr. D Struct. Biol., 2016, 72, 1290-1297; DOI: 10.1107/S205979831601806410.1107/S2059798316018064Search in Google Scholar PubMed PubMed Central

[51] Wang P., Li J., Tao J., Sha B., The luminal domain of the ER stress sensor protein PERK binds misfolded proteins and thereby triggers PERK oligomerization, J. Biol. Chem., 2018, 293, 4110-4121; DOI: 10.1074/jbc.RA117.00129410.1074/jbc.RA117.001294Search in Google Scholar PubMed PubMed Central

[52] Oikawa D., Kitamura A., Kinjo M., Iwawaki T., Direct association of unfolded proteins with mammalian ER stress sensor, IRE1beta, PLoS One, 2012, 7, e51290; DOI: 10.1371/journal.pone.005129010.1371/journal.pone.0051290Search in Google Scholar PubMed PubMed Central

[53] Aragon T., van Anken E., Pincus D., Serafimova I.M., Korennykh A.V., Rubio C.A. et al., Messenger RNA targeting to endoplasmic reticulum stress signalling sites, Nature, 2009, 457, 736-740; DOI: 10.1038/nature0764110.1038/nature07641Search in Google Scholar PubMed PubMed Central

[54] Korennykh A.V., Egea P.F., Korostelev A.A., Finer-Moore J., Zhang C., Shokat K.M. et al., The unfolded protein response signals through high-order assembly of Ire1, Nature, 2009, 457, 687-693; DOI: 10.1038/nature0766110.1038/nature07661Search in Google Scholar PubMed PubMed Central

[55] van Anken E., Pincus D., Coyle S., Aragon T., Osman C., Lari F. et al., Specificity in endoplasmic reticulum-stress signaling in yeast entails a step-wise engagement of HAC1 mRNA to clusters of the stress sensor Ire1, eLife, 2014, 3, e05031; DOI: 10.7554/eLife.0503110.7554/eLife.05031Search in Google Scholar PubMed PubMed Central

[56] Li H., Korennykh A.V., Behrman S.L., Walter P., Mammalian endoplasmic reticulum stress sensor IRE1 signals by dynamic clustering, Proc. Natl. Acad. Sci. USA, 2010, 107, 16113-16118; DOI: 10.1073/pnas.101058010710.1073/pnas.1010580107Search in Google Scholar PubMed PubMed Central

[57] Ghosh R., Wang L., Wang E.S., Perera B.G., Igbaria A., Morita S. et al., Allosteric inhibition of the IRE1alpha RNase preserves cell viability and function during endoplasmic reticulum stress, Cell, 2014, 158, 534-548; DOI: 10.1016/j.cell.2014.07.00210.1016/j.cell.2014.07.002Search in Google Scholar PubMed PubMed Central

[58] He Y., Beatty A., Han X., Ji Y., Ma X., Adelstein R.S. et al., Nonmuscle myosin IIB links cytoskeleton to IRE1alpha signaling during ER stress, Dev. Cell, 2012, 23, 1141-1152; DOI: 10.1016/j.devcel.2012.11.00610.1016/j.devcel.2012.11.006Search in Google Scholar PubMed PubMed Central

[59] Ishiwata-Kimata Y., Yamamoto Y.H., Takizawa K., Kohno K., Kimata Y., F-actin and a type-II myosin are required for efficient clustering of the ER stress sensor Ire1, Cell Struct. Funct., 2013, 38, 135-14310.1247/csf.12033Search in Google Scholar PubMed

[60] Carrara M., Prischi F., Nowak P.R., Ali M.M., Crystal structures reveal transient PERK luminal domain tetramerization in endoplasmic reticulum stress signaling, EMBO J., 2015, 34, 1589-1600; DOI: 10.15252/embj.20148918310.15252/embj.201489183Search in Google Scholar PubMed PubMed Central

[61] Oikawa D., Kimata Y., Kohno K., Self-association and BiP dissociation are not sufficient for activation of the ER stress sensor Ire1, J. Cell Sci., 2007, 120, 1681-1688; DOI: 10.1242/jcs.00280810.1242/jcs.002808Search in Google Scholar PubMed

[62] Papa F.R., Zhang C., Shokat K., Walter P., Bypassing a kinase activity with an ATP-competitive drug, Science, 2003, 302, 1533-1537; DOI: 10.1126/science.109003110.1126/science.1090031Search in Google Scholar PubMed

[63] Chawla A., Chakrabarti S., Ghosh G., Niwa M., Attenuation of yeast UPR is essential for survival and is mediated by IRE1 kinase, J. Cell Biol., 2011, 193, 41-50; DOI: 10.1083/jcb.20100807110.1083/jcb.201008071Search in Google Scholar PubMed PubMed Central

[64] Rubio C., Pincus D., Korennykh A., Schuck S., El-Samad H., Walter P., Homeostatic adaptation to endoplasmic reticulum stress depends on Ire1 kinase activity, J. Cell Biol., 2011, 193, 171-184; DOI: 10.1083/jcb.20100707710.1083/jcb.201007077Search in Google Scholar PubMed PubMed Central

[65] Lee K.P., Dey M., Neculai D., Cao C., Dever T.E., Sicheri F., Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing, Cell, 2008, 132, 89-100; DOI: 10.1016/j.cell.2007.10.05710.1016/j.cell.2007.10.057Search in Google Scholar PubMed PubMed Central

[66] Ishiwata-Kimata Y., Promlek T., Kohno K., Kimata Y., BiP-bound and nonclustered mode of Ire1 evokes a weak but sustained unfolded protein response, Genes Cells, 2013, 18, 288-301;DOI: 10.1111/gtc.1203510.1111/gtc.12035Search in Google Scholar PubMed

[67] Nikawa J., Yamashita S., IRE1 encodes a putative protein kinase containing a membrane-spanning domain and is required for inositol phototrophy in Saccharomyces cerevisiae, Mol. Microbiol., 1992, 6, 1441-144610.1111/j.1365-2958.1992.tb00864.xSearch in Google Scholar PubMed

[68] Cox J.S., Chapman R.E., Walter P., The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane, Mol. Biol. Cell, 1997, 8, 1805-181410.1091/mbc.8.9.1805Search in Google Scholar PubMed PubMed Central

[69] Pineau L., Ferreira T., Lipid-induced ER stress in yeast and beta cells: parallel trails to a common fate, FEMS Yeast Res., 2010, 10, 1035-1045; DOI: 10.1111/j.1567-1364.2010.00674.x10.1111/j.1567-1364.2010.00674.xSearch in Google Scholar PubMed

[70] Volmer R., van der Ploeg K., Ron D., Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains, Proc. Natl. Acad. Sci. USA, 2013, 110, 4628-4633; DOI: 10.1073/pnas.121761111010.1073/pnas.1217611110Search in Google Scholar PubMed PubMed Central

[71] Halbleib K., Pesek K., Covino R., Hofbauer H.F., Wunnicke D., Hanelt I. et al., Activation of the Unfolded Protein Response by Lipid Bilayer Stress, Mol. Cell, 2017, 67, 673-684; DOI: 10.1016/j.molcel.2017.06.01210.1016/j.molcel.2017.06.012Search in Google Scholar PubMed

[72] Strayle J., Pozzan T., Rudolph H.K., Steady-state free Ca(2+) in the yeast endoplasmic reticulum reaches only 10 microM and is mainly controlled by the secretory pathway pump pmr1, EMBO J., 1999, 18, 4733-474310.1093/emboj/18.17.4733Search in Google Scholar PubMed PubMed Central

[73] Helenius A., Aebi M., Roles of N-linked glycans in the endoplasmic reticulum, Annu. Rev. Biochem., 2004, 73, 1019-104910.1146/annurev.biochem.73.011303.073752Search in Google Scholar PubMed

[74] Fu S., Yang L., Li P., Hofmann O., Dicker L., Hide W. et al., Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity, Nature, 2011, 473, 528-531; DOI: 10.1038/nature0996810.1038/nature09968Search in Google Scholar PubMed PubMed Central

[75] Chen Y., Brandizzi F., IRE1: ER stress sensor and cell fate executor, Trends Cell Biol., 2013, 23, 547-555; DOI: 10.1016/j.tcb.2013.06.00510.1016/j.tcb.2013.06.005Search in Google Scholar PubMed PubMed Central

[76] Lisbona F., Rojas-Rivera D., Thielen P., Zamorano S., Todd D., Martinon F. et al., BAX inhibitor-1 is a negative regulator of the ER stress sensor IRE1alpha, Mol. Cell, 2009, 33, 679-691; DOI: 10.1016/j.molcel.2009.02.01710.1016/j.molcel.2009.02.017Search in Google Scholar PubMed PubMed Central

[77] Jwa M., Chang P., PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1alphamediated unfolded protein response, Nat. Cell Biol., 2012, 14, 1223-1230; DOI: 10.1038/ncb259310.1038/ncb2593Search in Google Scholar PubMed PubMed Central

[78] Plumb R., Zhang Z.R., Appathurai S., Mariappan M., A functional link between the co-translational protein translocation pathway and the UPR, eLife, 2015, 4; DOI: 10.7554/eLife.0742610.7554/eLife.07426Search in Google Scholar PubMed PubMed Central

[79] Sundaram A., Plumb R., Appathurai S., Mariappan M., The Sec61 translocon limits IRE1alpha signaling during the unfolded protein response, eLife, 2017, 6; DOI: 10.7554/eLife.2718710.7554/eLife.27187Search in Google Scholar PubMed PubMed Central

[80] Pinkaew D., Chattopadhyay A., King M.D., Chunhacha P., Liu Z., Stevenson H.L. et al., Fortilin binds IRE1alpha and prevents ER stress from signaling apoptotic cell death, Nat. Commun., 2017, 8, 18; DOI: 10.1038/s41467-017-00029-110.1038/s41467-017-00029-1Search in Google Scholar PubMed PubMed Central

[81] Eletto D., Eletto D., Dersh D., Gidalevitz T., Argon Y., Protein disulfide isomerase A6 controls the decay of IRE1alpha signaling via disulfide-dependent association, Mol. Cell, 2014, 53, 562-576; DOI: 10.1016/j.molcel.2014.01.00410.1016/j.molcel.2014.01.004Search in Google Scholar PubMed PubMed Central

[82] Nakato R., Ohkubo Y., Konishi A., Shibata M., Kaneko Y., Iwawaki T. et al., Regulation of the unfolded protein response via S-nitrosylation of sensors of endoplasmic reticulum stress, Sci. Rep., 2015, 5, 14812; DOI: 10.1038/srep1481210.1038/srep14812Search in Google Scholar PubMed PubMed Central

[83] Kimata K., Kohno K., Endoplasmic reticulum stress-sensing mechanisms in yeast and mammalian cells, Curr. Opin. Cell Biol., 2011, 23, 135-142; DOI: 10.1016/j.ceb.2010.10.00810.1016/j.ceb.2010.10.008Search in Google Scholar PubMed

[84] Kitai Y., Ariyama H., Kono N., Oikawa D., Iwawaki T., Arai H., Membrane lipid saturation activates IRE1alpha without inducing clustering, Genes Cells, 2013, 18, 798-809; DOI: 10.1111/gtc.1207410.1111/gtc.12074Search in Google Scholar PubMed

[85] Lajoie P., Fazio E.N., Snapp E.L., Approaches to imaging unfolded secretory protein stress in living cells, Endoplasmic Reticulum Stress Dis, 2014, 1, 27-3910.2478/ersc-2014-0002Search in Google Scholar PubMed PubMed Central

[86] Liu C.Y., Schroder M., Kaufman R.J., Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum, J. Biol. Chem., 2000, 275, 24881-24885; DOI: 10.1074/jbc.M004454200.10.1074/jbc.M004454200Search in Google Scholar PubMed

Received: 2018-07-17
Accepted: 2018-08-27
Published Online: 2018-10-26
Published in Print: 2018-10-01

© by Yuki Ishiwata-Kimata et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 31.5.2023 from https://www.degruyter.com/document/doi/10.1515/ersc-2018-0001/html
Scroll to top button