Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access April 4, 2016

Modeling early stage bone regeneration with biomimetic electrospun fibrinogen nanofibers and adipose-derived mesenchymal stem cells

Michael P. Francis, Yas M. Moghaddam-White, Patrick C. Sachs, Matthew J. Beckman, Stephen M. Chen, Gary L. Bowlin, Lynne W. Elmore and Shawn E. Holt
From the journal Electrospinning

Abstract

The key events of the earliest stages of bone regeneration have been described in vivo although not yet modeled in an in vitro environment, where mechanistic cell-matrix-growth factor interactions can be more effectively studied. Here, we explore an early-stage bone regeneration model where the ability of electrospun fibrinogen (Fg) nanofibers to regulate osteoblastogenesis between distinct mesenchymal stem cells populations is assessed. Electrospun scaffolds of Fg, polydioxanone (PDO), and a Fg:PDO blend were seeded with adipose-derived mesenchymal stem cells (ASCs) and grown for 7-21 days in osteogenic differentiation media or control growth media. Scaffolds were analyzed weekly for histologic and molecular evidence of osteoblastogenesis. In response to osteogenic differentiation media, ASCs seeded on the Fg scaffolds exhibit elevated expression of multiple genes associated with osteoblastogenesis. Histologic stains and scanning electron microscopy demonstrate widespread mineralization within the scaffolds, as well as de novo type I collagen synthesis. Our data demonstrates that electrospun Fg nanofibers support ASC osteogenic differentiation, yet the scaffold itself does not appear to be osteoinductive. Together, ASCs and Fg recapitulate early stages of bone regeneration ex vivo and presents a prospective autologous therapeutic approach for bone repair.

References

[1] Lieberman J.R., Friedlaender G.E. (2005), Bone regeneration and repair: biology and clinical applications. Humana Press, ISBN-10: 0896038475Search in Google Scholar

[2] Schindeler A., McDonald M.M., Bokko P., Little D.G. (2008), Bone remodeling during fracture repair: The cellular picture. Semin Cell Dev Biol 19:459-66.10.1016/j.semcdb.2008.07.004Search in Google Scholar

[3] Liebschner M.A.K., Wettergreen M.A. (2003), Optimization of Bone Scaffold Engineering for Load Bearing Applications. Topics in Tissue Engineering, Eds. Ashammakhi N, Ferretti P.Search in Google Scholar

[4] Valbonesi M. (2006), Fibrin glues of human origin. Best Pract Res Clin Haematol. 19:191-20310.1016/j.beha.2005.01.009Search in Google Scholar

[5] Ho S.T., Hutmacher D.W., Ekaputra A.K., Hitendra D., Hui J.H. (2010), The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model. Tissue Eng Part A 16:1123-41.10.1089/ten.tea.2009.0471Search in Google Scholar

[6] Zimmermann R., Jakubietz R., Jakubietz M., Strasser E., Schlegel A., Wiltfang J., Eckstein R. (2001), Different preoperation method to obtain platelet components as a source of growth factors for local application. Transfusion 41:1217-1224.10.1046/j.1537-2995.2001.41101217.xSearch in Google Scholar

[7] Ho W., Tawil B., Dunn J.C.Y., Wu B.M. (2006), The behavior of human mesenchymal stem cells in 3D fibrin clots: Dependence on fibrinogen concentration and clot structure. Tissue Engineering 12:1587-1595.10.1089/ten.2006.12.1587Search in Google Scholar

[8] Catelas I., Sese N., Wu B.M., Dunn J.C.Y., Helgerson S., Tawil B. (2006), Human Mesenchymal Stem Cell Proliferation and Osteogenic Differentiation in Fibrin Gels in Vitro. Tissue Engineering 12:2385-2396.10.1089/ten.2006.12.2385Search in Google Scholar

[9] Bensaïd W., Triffitt J.T., Blanchat C., Oudina K., Sedel L., Petite H. (2003), A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 24:2497-502.10.1016/S0142-9612(02)00618-XSearch in Google Scholar

[10] Isogai N., LandisW.J., Mori R., Gotoh Y., Gerstenfeld L., Upton J., Vacanti J. (2000), Experimental Use of Fibrin Glue to Induce Site- Directed Osteogenesis from Cultured Periosteal Cells. Plast Reconstr Surg 105:953-63.10.1097/00006534-200003000-00019Search in Google Scholar PubMed

[11] Lendeckel S., Jödicke A., Christophis P., Heidinger K., Wolff J., Fraser J.K., Hedrick M.H., Berthold L., Howaldt H.P. (2004), Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomax Surg 32:370-3.10.1016/j.jcms.2004.06.002Search in Google Scholar PubMed

[12] Zuk P.A., Zhu M., Mizuno H., Huang J., Futrell J.W., Katz A.J., Benhaim P., Lorenz H.P., Hedrick M.H. (2001), Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211-28.10.1089/107632701300062859Search in Google Scholar PubMed

[13] Zuk P.A., Zhu M., Ashjian P., De Ugarte D.A., Huang J.I., Mizuno H., Alfonso Z.C., Fraser J.K., Benhaim P., Hedrick M.H. (2002), Human adipose tissue is a source of multipotent stem cells.Mol Biol Cell 13:4279-95.10.1091/mbc.e02-02-0105Search in Google Scholar PubMed PubMed Central

[14] Katz A.J., Tholpady A., Tholpady S.S., Shang H., Ogle R.C. (2005), Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 23:412-23.10.1634/stemcells.2004-0021Search in Google Scholar PubMed

[15] Izadpanah R., Trygg C., Patel B., Kriedt C., Dufour J., Gimble J.M., Bunnell B.A. (2006), Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 99:1285-97.10.1002/jcb.20904Search in Google Scholar PubMed PubMed Central

[16] Kern S., Eichler H., Stoeve J., Klüter H., Bieback K. (2006), Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294-301.10.1634/stemcells.2005-0342Search in Google Scholar PubMed

[17] Chamberlain G., Fox J., Ashton B., Middleton J. (2007), Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739-49.10.1634/stemcells.2007-0197Search in Google Scholar PubMed

[18] Wang M., Crisostomo P.R., Herring C., Meldrum K.K., Meldrum D.R. (2006), Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF, and IGF-I in response to TNF by a p38 MAPK-dependent mechanism. Am J Physiol Regul Intgr Comp Physiol 291:R880-4.10.1152/ajpregu.00280.2006Search in Google Scholar PubMed

[19] Abedin M., Tintut Y., Demer L.L. (2004), Mesenchymal stem cells and the artery wall. Circ Res 95:671-676.10.1161/01.RES.0000143421.27684.12Search in Google Scholar PubMed

[20] Amos P.J., Shang H., Bailey A.M., Taylor A., Katz A.J., Peirce S.M. (2008), IFATS collection: The role of human adipose-derived stromal cells in inflammatory microvascular remodeling and evidence of a perivascular phenotype. Stem Cells 26:2682-2690.10.1634/stemcells.2008-0030Search in Google Scholar PubMed PubMed Central

[21] Crisan M., Yap S., Casteilla L., Chen C.W., Corselli M., Park T.S., Andriolo G., Sun B., Zheng B., Zhang L., Norotte C., Teng P.N., Traas J., Schugar R., Deasy B.M., Badylak S., Buhring H.J., Giacobino J.P., Lazzari L., Huard J., Péault B. (2008), A perivascular origin for mesenchymal stem cells inmultiple human organs. Cell Stem Cell 3:301-313.10.1016/j.stem.2008.07.003Search in Google Scholar PubMed

[22] Traktuev D.O., Merfeld-Clauss S., Li J., Kolonin M., Arap W., Pasqualini R., Johnstone B.H., March K.L. (2008), A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102:77-85.10.1161/CIRCRESAHA.107.159475Search in Google Scholar PubMed

[23] Zannettino A.C., Paton S., Arthur A., Khor F., Itescu S., Gimble J.M., Gronthos S. (2008), Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214:413-421.10.1002/jcp.21210Search in Google Scholar PubMed

[24] Barnes C.P., Sell S.A., Boland E.D., Simpson D.G., Bowlin G.L. (2007), Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 59:1413-33.10.1016/j.addr.2007.04.022Search in Google Scholar PubMed

[25] Boland E.D., Coleman B.D., Barnes C.P., Simpson D.G., Wnek G.E., Bowlin G.L. (2005), Electrospinning polydioxanone for biomedical applications. Acta Biomater 1:115-23.10.1016/j.actbio.2004.09.003Search in Google Scholar PubMed

[26] Venugopal J., Low S., Choon A.T., Kumar T.S.S., Ramakrishna R. (2008), Mineralization of osteoblasts with electrospun collagen/ hydroxyapatite nanofibers. J Mater Sci Mater Med 19:2039-46.10.1007/s10856-007-3289-xSearch in Google Scholar PubMed

[27] Wnek G.E., Carr M., Simpson D.G., Bowlin G.L. (2003), Electrospinning of nanofiber fibrinogen structures, Nano Lett 3:213-216.10.1021/nl025866cSearch in Google Scholar

[28] Francis M.P., Sachs P.C., Madurantakam P.A., Sell S.A., Elmore L.W., Bowlin G.L., Holt S.E. (2012), Electrospinning Adipose Tissue-Derived ExtracellularMatrix for Adipose Stem Cell Culture. J Biomed Mat Res Part A 100:1716-24.10.1002/jbm.a.34126Search in Google Scholar PubMed

[29] Mosesson M.W. (2005), Fibrinogen and fibrin structure and functions. J Thromb Haemost 3:1894-904.10.1111/j.1538-7836.2005.01365.xSearch in Google Scholar PubMed

[30] Giannini G., Mauro V., Agostino T., Gianfranco B. (2004), Use of autologous fibrin platelet glue and bone fragments in maxillofacial surgery. Transfus Apheresis Sci 30:139-144.10.1016/j.transci.2003.11.009Search in Google Scholar PubMed

[31] McManus M.C., Boland E.D., Simpson D.G., Barnes C.P., Bowlin G.L. (2007), Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model. J Biomed Mat Res A 81:299-309.10.1002/jbm.a.30989Search in Google Scholar PubMed

[32] McManus M., Boland E., Sell S., Bowen W., Koo H., Simpson D.G., Bowlin G.L. (2007), Electrospun nanofibre fibrinogen for urinary tract tissue reconstruction. Biomed Mat 2:257-262.10.1088/1748-6041/2/4/008Search in Google Scholar PubMed

[33] McManus M.C., Boland E.D., Koo H.P., Barnes C.P., Pawlowski K.J., Wnek G.E., Simpson D.G., Bowlin G.L. (2006), Mechanical properties of electrospun fibrinogen structures. Acta Biomat 2:19-28.10.1016/j.actbio.2005.09.008Search in Google Scholar

[34] Francis M.P., Sachs P.C., Elmore L.W., Holt S.E. (2010), Isolating adipose-derived mesenchymal stem cells from lipoaspirate blood and saline fraction. Organogenesis 6:10-14.10.4161/org.6.1.10019Search in Google Scholar

[35] Sachs P.C., Francis M.P., Brumelle J., Rao R.R., Elmore L.W., Holt S.E. (2012), Defining essential stem cell characteristics in adipose-derived stromal cells extracted from distinct anatomical sites. Cell Tissue Res 349:505-15.10.1007/s00441-012-1423-7Search in Google Scholar

[36] Friedenstein A.J., Deriglasova U.F., Kulagina N.N., Panasuk A.F., Rudakowa S.F., Luria E.A., Ruadkow I.A. (1974), Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2:83-92.Search in Google Scholar

[37] Sell S.A., Francis M.P., Garg K., McClure M.J., Simpson D.G., Bowlin G.L. (2008), Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications. Biomed Mater 3:045001 (11pp). 10.1088/1748-6041/3/4/045001Search in Google Scholar

[38] Sefcik L.S., Neal R.A., Kaszuba S.N., Parker A.M., Katz A.J., Ogle R.C., Botchwey E.A. (2008), Collagen nanofibres are a biomimetic substrate for the serum-free osteogenic differentiation of human adipose stem cells. J Tissue Eng Regen Med 2:210-20.10.1002/term.85Search in Google Scholar

[39] Hotary K.B., Yana I., Sabeh F., Li X.Y., Holmbeck K., Birkedal- Hansen H., Allen E.D., Hiraoka N., Weiss S.J. (2002), Matrix metalloproteinases (MMPs) regulate fibrin-invasive activity via MT1-MMP-dependent and -independent processes. J Exp Med 195:295-308.10.1084/jem.20010815Search in Google Scholar

[40] Wutticharoenmongkol P., Pavasant P., Supaphol P. (2007), Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles. Biomacromolecules 8:2602-10.10.1021/bm700451pSearch in Google Scholar

[41] Kim H.W., Yu H.S., Lee H.H. (2008), Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses. J Biomed Mater Res A 87:25-32.10.1002/jbm.a.31677Search in Google Scholar

[42] McBeath R., Pirone D.M., Nelson C.M., Bhadriraju K., Chen C.S.(2004), Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Devel Cell 6:483-495.10.1016/S1534-5807(04)00075-9Search in Google Scholar

[43] Franceschi R.T., Iyer B.S. (1992), Relationship between collagen synthesis and expression of the osteoblast phenotype in Mc3t3- E1 cells. J Bone Miner Res 7:235-246.10.1002/jbmr.5650070216Search in Google Scholar PubMed

[44] Shih Y.R., Chen C.N., Tsai S.W., Wang Y.J., Lee O.K. (2006), Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells 24:2391-2397.10.1634/stemcells.2006-0253Search in Google Scholar PubMed

[45] Mavis B., Demirtaş T.T., Gümüşderelioğlu M., Gündüz G., Colak U. (2009), Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate. Acta Biomat 5:3098-3111.10.1016/j.actbio.2009.04.037Search in Google Scholar PubMed

[46] McCullen S.D., Zhu Y., Bernacki S.H., Narayan R.J., Pourdeyhimi ., Gorga R.E., Loboa E.G. (2009), Electrospun composite poly(Llactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells. Biomed Mater 4:035002 (9pp).10.1088/1748-6041/4/3/035002Search in Google Scholar PubMed

Received: 2015-6-12
Revised: 2016-1-8
Accepted: 2016-1-13
Published Online: 2016-4-4
Published in Print: 2016-4-4

© 2017

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Scroll Up Arrow