Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access September 2, 2017

A review of electrospinning manipulation techniques to direct fiber deposition and maximize pore size

Kevin P. Feltz, Emily A. Growney Kalaf, Chengpeng Chen, R. Scott Martin and Scott A. Sell
From the journal Electrospinning

Abstract

Electrospinning has been widely accepted for several decades by the tissue engineering and regenerative medicine community as a technique for nanofiber production. Owing to the inherent flexibility of the electrospinning process, a number of techniques can be easily implemented to control fiber deposition (i.e. electric/ magnetic field manipulation, use of alternating current, or air-based fiber focusing) and/or porosity (i.e. air impedance, sacrificial porogen/sacrificial fiber incorporation, cryo-electrospinning, or alternative techniques). The purpose of this review is to highlight some of the recent work using these techniques to create electrospun scaffolds appropriate for mimicking the structure of the native extracellular matrix, and to enhance the applicability of advanced electrospinning techniques in the field of tissue engineering.

References

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Cell junctions, cell adhesion, and the extracellular matrix, (2002).Search in Google Scholar

[2] R.F. Diegelmann, M.C. Evans, Wound healing: an overview of acute, fibrotic and delayed healing, Front Biosci 9(1) (2004) 283-289.Search in Google Scholar

[3] F. Rosso, A. Giordano, M. Barbarisi, A. Barbarisi, From cell-ECM interactions to tissue engineering, Journal of cellular physiology 199(2) (2004) 174-180.10.1002/jcp.10471Search in Google Scholar

[4] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, The extracellular matrix of animals, (2002). Search in Google Scholar

[5] M.F. Goody, C.A. Henry, Dynamic interactions between cells and their extracellular matrix mediate embryonic development, Mol Reprod Dev 77(6) (2010) 475-88.10.1002/mrd.21157Search in Google Scholar

[6] F.M. Watt, H. Fujiwara, Cell-extracellular matrix interactions in normal and diseased skin, Cold Spring Harb Perspect Biol 3(4) (2011).10.1101/cshperspect.a005124Search in Google Scholar

[7] E. Boland, P. Espy, G. Bowlin, Tissue Engineering Scaffolds, Encyclopedia of Biomaterials and Biomedical Engineering, Second Edition (Online Version), CRC Press2008, pp. 2828-2837.10.1201/b18990-274Search in Google Scholar

[8] X. Wen, D. Shi, N. Zhang, Applications of nanotechnology in tissue engineering, Handbook of nanostructured biomaterials and their applications in nanobiotechnology 2 (2005) 393-414.Search in Google Scholar

[9] S. Partridge, H. Davis, The chemistry of connective tissues. 3. Composition of the soluble proteins derived from elastin, Biochemical Journal 61(1) (1955) 21.10.1042/bj0610021Search in Google Scholar

[10] W.F. Daamen, J. Veerkamp, J. Van Hest, T. Van Kuppevelt, Elastin as a biomaterial for tissue engineering, Biomaterials 28(30) (2007) 4378-4398.10.1016/j.biomaterials.2007.06.025Search in Google Scholar

[11] G.H. Altman, R.L. Horan, H.H. Lu, J. Moreau, I. Martin, J.C. Richmond, D.L. Kaplan, Silk matrix for tissue engineered anteriorcruciate ligaments, Biomaterials 23(20) (2002) 4131-4141. 10.1016/S0142-9612(02)00156-4Search in Google Scholar

[12] H. Liu, H. Fan, Y. Wang, S.L. Toh, J.C. Goh, The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering, Biomaterials 29(6) (2008) 662-674.10.1016/j.biomaterials.2007.10.035Search in Google Scholar PubMed

[13] Y.K. Seo, G.M. Choi, S.Y. Kwon, H.S. Lee, Y.S. Park, K.Y. Song, Y.J. Kim, J.K. Park, The biocompatibility of silk scaffold for tissue engineered ligaments, Key Engineering Materials, Trans Tech Publ, 2007, pp. 73-76.10.4028/0-87849-436-7.73Search in Google Scholar

[14] S. Toh, T. Teh, S. Vallaya, J. Goh, Novel silk scaffolds for ligament tissue engineering applications, Key Engineering Materials, Trans Tech Publ, 2006, pp. 727-730.10.4028/0-87849-415-4.727Search in Google Scholar

[15] H. Yoshimoto, Y. Shin, H. Terai, J. Vacanti, A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering, Biomaterials 24(12) (2003) 2077-2082.10.1016/S0142-9612(02)00635-XSearch in Google Scholar

[16] K. Fujihara, M. Kotaki, S. Ramakrishna, Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers, Biomaterials 26(19) (2005) 4139-4147.10.1016/j.biomaterials.2004.09.014Search in Google Scholar

[17] S.A. Sell, P.S. Wolfe, K. Garg, J.M. McCool, I.A. Rodriguez, G.L. Bowlin, The Use of Natural Polymers in Tissue Engineering: A Focus on Electrospun Extracellular Matrix Analogues, Polymers 2(4) (2010) 522.Search in Google Scholar

[18] M.D. Shoulders, R.T. Raines, Collagen structure and stability, Annual review of biochemistry 78 (2009) 929.10.1146/annurev.biochem.77.032207.120833Search in Google Scholar

[19] B.O. Palsson, S.N. Bhatia, Tissue engineering, 2004, Pearson Education, Upper Saddle River, New Jersey.Search in Google Scholar

[20] M. Li, M.J. Mondrinos, M.R. Gandhi, F.K. Ko, A.S. Weiss, P.I. Lelkes, Electrospun protein fibers as matrices for tissue engineering, Biomaterials 26(30) (2005) 5999-6008.10.1016/j.biomaterials.2005.03.030Search in Google Scholar

[21] H.P. Erickson, N. Carrell, J. McDONAGH, Fibronectin molecule visualized in electron microscopy: a long, thin, flexible strand, The Journal of cell biology 91(3) (1981) 673-678.Search in Google Scholar

[22] R.A. Neal, S.G. McClugage III, M.C. Link, L.S. Sefcik, R.C. Ogle, E.A. Botchwey, Laminin nanofiber meshes that mimic morphological properties and bioactivity of basement membranes, Tissue Engineering Part C: Methods 15(1) (2008) 11-21.Search in Google Scholar

[23] F.M. Watt, W.T.S. Huck, Role of the extracellular matrix in regulating stem cell fate, Nat Rev Mol Cell Biol 14(8) (2013) 467-473.10.1038/nrm3620Search in Google Scholar

[24] X. Xia, X.-h. Shen, M. Chen, Y.-q. Xiao, Y. He, Connective tissue diseases, (1990).Search in Google Scholar

[25] M.A. Loots, E.N. Lamme, J. Zeegelaar, J.R. Mekkes, J.D. Bos, E. Middelkoop, Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds, Journal of Investigative Dermatology 111(5) (1998) 850-857.10.1046/j.1523-1747.1998.00381.xSearch in Google Scholar

[26] M. Marsden, D.W. DeSimone, Integrin-ECM Interactions Regulate Cadherin-Dependent Cell Adhesion and Are Required for Convergent Extension in <em>Xenopus</em>, Current Biology 13(14) 1182-1191.10.1016/S0960-9822(03)00433-0Search in Google Scholar

[27] D. Loessner, K.S. Stok, M.P. Lutolf, D.W. Hutmacher, J.A.Clements, S.C. Rizzi, Bioengineered 3D platform to explore cell- ECM interactions and drug resistance of epithelial ovarian cancer cells, Biomaterials 31(32) (2010) 8494-8506.10.1016/j.biomaterials.2010.07.064Search in Google Scholar PubMed

[28] S. Ramakrishna, An Introduction to Electrospinning and Nanofibers, World Scientific2005.10.1142/5894Search in Google Scholar

[29] A. Biswas, I.S. Bayer, A.S. Biris, T. Wang, E. Dervishi, F Faupel, Advances in top-down and bottom-up surface nanofabrication: Techniques, applications & future prospects, Advances in colloid and interface science 170(1) (2012) 2-27.Search in Google Scholar

[30] J.J. Norman, T.A. Desai, Methods for fabrication of nanoscale topography for tissue engineering scaffolds, Annals of biomedical engineering 34(1) (2006) 89-101.10.1007/s10439-005-9005-4Search in Google Scholar PubMed

[31] F. Anton, Process and apparatus for preparing artificial threads, Google Patents, 1934. Search in Google Scholar

[32] S. Sell, C. Barnes, M. Smith, M. McClure, P. Madurantakam, J. Grant, M. McManus, G. Bowlin, Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers, Polymer International 56(11) (2007) 1349-1360.Search in Google Scholar

[33] W. Liu, S. Thomopoulos, Y. Xia, Electrospun nanofibers for regenerative medicine, Advanced healthcare materials 1(1) (2012) 10-25.10.1002/adhm.201100021Search in Google Scholar PubMed PubMed Central

[34] E.D. Boland, T.A. Telemeco, D.G. Simpson, G.E. Wnek, G.L. Bowlin, Utilizing acid pretreatment and electrospinning to improve biocompatibility of poly (glycolic acid) for tissue engineering, Journal of Biomedical Materials Research Part B: Applied Biomaterials 71(1) (2004) 144-152.Search in Google Scholar

[35] L. Kolacna, J. Bakesova, F. Varga, E. Kostakova, L. Plánka, A. Necas, D. Lukas, E. Amler, V. Pelouch, Biochemical and biophysical aspects of collagen nanostructure in the extracellular matrix, Physiological Research 56 (2007) S51.10.33549/physiolres.931302Search in Google Scholar PubMed

[36] M. Schindler, I. Ahmed, J. Kamal, A. Nur-E-Kamal, T.H. Grafe, H.Y. Chung, S. Meiners, A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture, Biomaterials 26(28) (2005) 5624-5631.10.1016/j.biomaterials.2005.02.014Search in Google Scholar PubMed

[37] T. Telemeco, C. Ayres, G. Bowlin, G. Wnek, E. Boland, N. Cohen, C. Baumgarten, J. Mathews, D. Simpson, Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning, Acta biomaterialia 1(4) (2005) 377-385.10.1016/j.actbio.2005.04.006Search in Google Scholar PubMed

[38] J. Zeltinger, J.K. Sherwood, D.A. Graham, R. Müeller, L.G. Griffith, Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition, Tissue engineering 7(5) (2001) 557-572.10.1089/107632701753213183Search in Google Scholar PubMed

[39] P. Zahedi, I. Rezaeian, S.O. Ranaei-Siadat, S.H. Jafari, P. Supaphol, A review on wound dressingswith an emphasis on electrospun nanofibrous polymeric bandages, Polymers for Advanced Technologies 21(2) (2010) 77-95.10.1002/pat.1625Search in Google Scholar

[40] D.S. Katti, K.W. Robinson, F.K. Ko, C.T. Laurencin, Bioresorbable nanofiber-based systems for wound healing and drug delivery: Optimization of fabrication parameters, Journal of Biomedical Materials Research Part B: Applied Biomaterials 70(2) (2004) 286-296.Search in Google Scholar

[41] S. Liao, B. Li, Z.Ma, H. Wei, C. Chan, S. Ramakrishna, Biomimeticelectrospun nanofibers for tissue regeneration, BiomedicalMaterials 1(3) (2006) R45.10.1088/1748-6041/1/3/R01Search in Google Scholar PubMed

[42] E. Chong, T. Phan, I. Lim, Y. Zhang, B. Bay, S. Ramakrishna, C.Lim, Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution, Acta biomaterialia 3(3) (2007) 321-330.10.1016/j.actbio.2007.01.002Search in Google Scholar PubMed

[43] H. Powell, S. Boyce, Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal-epidermal skin substitutes, Journal of Biomedical Materials Research Part A 84(4) (2008) 1078-1086.10.1002/jbm.a.31498Search in Google Scholar PubMed

[44] B.J. Rybarczyk, S.O. Lawrence, P.J. Simpson-Haidaris, Matrixfibrinogenenhances wound closure by increasing both cell proliferation and migration, Blood 102(12) (2003) 4035-4043.10.1182/blood-2003-03-0822Search in Google Scholar PubMed

[45] G.E. Wnek, M.E. Carr, D.G. Simpson, G.L. Bowlin, Electrospinning of nanofiber fibrinogen structures, Nano Letters 3(2) (2003) 213-216.10.1021/nl025866cSearch in Google Scholar

[46] M.J. Smith, K.L. White, D.C. Smith, G.L. Bowlin, In vitro evaluations of innate and acquired immune responses to electrospun polydioxanone-elastin blends, Biomaterials 30(2) (2009) 149-159.10.1016/j.biomaterials.2008.09.019Search in Google Scholar PubMed

[47] T. Bini, S. Gao, S. Wang, S. Ramakrishna, Poly (l-lactideco- glycolide) biodegradable microfibers and electrospun nanofibers for nerve tissue engineering: an in vitro study, Journal of materials science 41(19) (2006) 6453-6459.Search in Google Scholar

[48] L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.-H. Nasr-Esfahani, S. Ramakrishna, Electrospun poly ("- caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering, Biomaterials 29(34) (2008) 4532-4539.10.1016/j.biomaterials.2008.08.007Search in Google Scholar PubMed

[49] E. Schnell, K. Klinkhammer, S. Balzer, G. Brook, D. Klee, P. Dalton, J. Mey, Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-e-caprolactone and a collagen/poly-_-caprolactone blend, Biomaterials 28(19) (2007) 3012-3025.10.1016/j.biomaterials.2007.03.009Search in Google Scholar PubMed

[50] B.S. Jha, R.J. Colello, J.R. Bowman, S.A. Sell, K.D. Lee, J.W. Bigbee, G.L. Bowlin, W.N. Chow, B.E. Mathern, D.G. Simpson, Two pole air gap electrospinning: fabrication of highly aligned, three-dimensional scaffolds for nerve reconstruction, Acta biomaterialia 7(1) (2011) 203-215.Search in Google Scholar

[51] C.P. Barnes, S.A. Sell, E.D. Boland, D.G. Simpson, G.L. Bowlin, Nanofiber technology: Designing the next generation of tissue engineering scaffolds, Advanced Drug Delivery Reviews 59(14) (2007) 1413-1433.Search in Google Scholar

[52] M. Browning, D. Dempsey, V. Guiza, S. Becerra, J. Rivera, B. Russell, M. Höök, F. Clubb, M. Miller, T. Fossum,Multilayer vascular grafts based on collagen-mimetic proteins, Acta biomaterialia 8(3) (2012) 1010-1021.10.1016/j.actbio.2011.11.015Search in Google Scholar PubMed

[53] W. He, Z. Ma, W.E. Teo, Y.X. Dong, P.A. Robless, T.C. Lim, S. Ramakrishna, Tubular nanofiber scaffolds for tissue engineeredsmall-diameter vascular grafts, Journal of biomedical materials research Part A 90(1) (2009) 205-216.10.1002/jbm.a.32081Search in Google Scholar PubMed

[54] C. Huang, R. Chen, Q. Ke, Y. Morsi, K. Zhang, X. Mo, Electrospun collagen-chitosan-TPU nanofibrous scaffolds for tissue engineered tubular grafts, Colloids and Surfaces B: Biointerfaces 82(2) (2011) 307-315.Search in Google Scholar

[55] M. Sato, Y. Nakazawa, R. Takahashi, K. Tanaka, M. Sata, D. Aytemiz, T. Asakura, Small-diameter vascular grafts of Bombyx mori silk fibroin prepared by a combination of electrospinning and sponge coating,Materials Letters 64(16) (2010) 1786-1788.10.1016/j.matlet.2010.05.024Search in Google Scholar

[56] V. Thomas, T. Donahoe, E. Nyairo, D.R. Dean, Y.K. Vohra, Electrospinning of Biosyn®-based tubular conduits: structural, morphological, and mechanical characterizations, Acta biomaterialia 7(5) (2011) 2070-2079.Search in Google Scholar

[57] A. Hasan, A. Memic, N. Annabi, M. Hossain, A. Paul, M.R. Dokmeci, F. Dehghani, A. Khademhosseini, Electrospun scaffolds for tissue engineering of vascular grafts, Acta biomaterialia 10(1) (2014) 11-25.10.1016/j.actbio.2013.08.022Search in Google Scholar PubMed PubMed Central

[58] S.A. Sell, M.J. McClure, C.P. Barnes, D.C. Knapp, B.H. Walpoth, D.G. Simpson, G.L. Bowlin, Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts, Biomedical Materials 1(2) (2006) 72.Search in Google Scholar

[59] S.A. Sell, M.J. McClure, K. Garg, P.S. Wolfe, G.L. Bowlin, Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering, Advanced Drug Delivery Reviews 61(12) (2009) 1007-1019.10.1016/j.addr.2009.07.012Search in Google Scholar PubMed

[60] K.A. McKenna, M.T. Hinds, R.C. Sarao, P.-C. Wu, C.L. Maslen, R.W. Glanville, D. Babcock, K.W. Gregory, Mechanical property characterization of electrospun recombinant human tropoelastin for vascular graft biomaterials, Acta biomaterialia 8(1) (2012) 225-233.10.1016/j.actbio.2011.08.001Search in Google Scholar PubMed PubMed Central

[61] S.G. Wise, M.J. Byrom, A. Waterhouse, P.G. Bannon, M.K. Ng, A.S. Weiss, A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties, Acta biomaterialia 7(1) (2011) 295-303.10.1016/j.actbio.2010.07.022Search in Google Scholar PubMed

[62] L. Soletti, Y. Hong, J. Guan, J.J. Stankus, M.S. El-Kurdi,W.R.Wagner, D.A. Vorp, A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts, Acta biomaterialia 6(1) (2010) 110-122.10.1016/j.actbio.2009.06.026Search in Google Scholar PubMed PubMed Central

[63] S.J. Lee, J. Liu, S.H. Oh, S. Soker, A. Atala, J.J. Yoo, Development of a composite vascular scaffolding system that withstands physiological vascular conditions, Biomaterials 29(19) (2008) 2891-2898.10.1016/j.biomaterials.2008.03.032Search in Google Scholar PubMed

[64] S. Kidoaki, I.K. Kwon, T. Matsuda, Mesoscopic spatial designs of nano-and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques, Biomaterials 26(1) (2005) 37-46.10.1016/j.biomaterials.2004.01.063Search in Google Scholar PubMed

[65] J.D. Stitzel, K.J. Pawlowski, G.E. Wnek, D.G. Simpson, G.L. Bowlin, Arterial smooth muscle cell proliferation on a novel biomimicking, biodegradable vascular graft scaffold, Journal of biomaterials applications 16(1) (2001) 22-33.10.1106/U2UU-M9QH-Y0BB-5GYLSearch in Google Scholar PubMed

[66] Y. Zhu, Y. Cao, J. Pan, Y. Liu, Macro-alignment of electrospun fibers for vascular tissue engineering, Journal of BiomedicalMaterials Research Part B: Applied Biomaterials 92(2) (2010) 508-516. Search in Google Scholar

[67] M. Shin, O. Ishii, T. Sueda, J. Vacanti, Contractile cardiac grafts using a novel nanofibrous mesh, Biomaterials 25(17) (2004) 3717-3723.10.1016/j.biomaterials.2003.10.055Search in Google Scholar PubMed

[68] X. Zong, H. Bien, C.-Y. Chung, L. Yin, D. Fang, B.S. Hsiao, B. Chu, E. Entcheva, Electrospun fine-textured scaffolds for heart tissue constructs, Biomaterials 26(26) (2005) 5330-5338.10.1016/j.biomaterials.2005.01.052Search in Google Scholar PubMed

[69] H. Zhang, M. Edirisinghe, Electrospinning zirconia fiber from a suspension, Journal of the American Ceramic Society 89(6) (2006) 1870-1875.10.1111/j.1551-2916.2006.01038.xSearch in Google Scholar

[70] K. Sisson, C. Zhang, M.C. Farach-Carson, D.B. Chase, J.F. Rabolt, Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin, Journal of biomedical materials research Part A 94(4) (2010) 1312-1320.10.1002/jbm.a.32756Search in Google Scholar PubMed

[71] M.P. Francis, Y.M. Moghaddam-White, P.C. Sachs, M.J. Beckman, S.M. Chen, G.L. Bowlin, L.W. Elmore, S.E. Holt, Modeling early stage bone regeneration with biomimetic electrospun fibrinogen nanofibers and adipose-derived mesenchymal stem cells, Electrospinning 1(1) (2016) 10-19.10.1515/esp-2016-0002Search in Google Scholar

[72] C. Agrawal, R.B. Ray, Biodegradable polymeric scaffolds formusculoskeletal tissue engineering, Journal of biomedical materials research 55(2) (2001) 141-150.10.1002/1097-4636(200105)55:2<141::AID-JBM1000>3.0.CO;2-JSearch in Google Scholar

[73] G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J. Chen, H.Lu, J. Richmond, D.L. Kaplan, Silk-based biomaterials, Biomaterials 24(3) (2003) 401-416.10.1016/S0142-9612(02)00353-8Search in Google Scholar

[74] A.J. Almarza, K.A. Athanasiou, Design characteristics for the tissue engineering of cartilaginous tissues, Annals of biomedical engineering 32(1) (2004) 2-17.10.1023/B:ABME.0000007786.37957.65Search in Google Scholar

[75] C.P. Barnes, C.W. Pemble IV, D.D. Brand, D.G. Simpson, G.L. Bowlin, Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol, Tissue engineering 13(7) (2007) 1593-1605.10.1089/ten.2006.0292Search in Google Scholar

[76] A. Alessandrino, B. Marelli, C. Arosio, S. Fare, M. Tanzi, G. Freddi, Electrospun silk fibroin mats for tissue engineering, Engineering in life sciences 8(3) (2008) 219-225.10.1002/elsc.200700067Search in Google Scholar

[77] C.A. Bashur, L.A. Dahlgren, A.S. Goldstein, Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly (D, L-lactic-co-glycolic acid) meshes, Biomaterials 27(33) (2006) 5681-5688.10.1016/j.biomaterials.2006.07.005Search in Google Scholar

[78] J. Doshi, D.H. Reneker, Electrospinning process and applications of electrospun fibers, Industry Applications Society Annual Meeting, 1993., Conference Record of the 1993 IEEE, IEEE, 1993, pp. 1698-1703.Search in Google Scholar

[79] D.H. Reneker, I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology 7(3) (1996) 216. 10.1088/0957-4484/7/3/009Search in Google Scholar

[80] G.H. Kim, Electrospinning process using field-controllable electrodes, Journal of Polymer Science Part B: Polymer Physics 44(10) (2006) 1426-1433.Search in Google Scholar

[81] J.M. Deitzel, J. Kleinmeyer, D. Harris, N.C. Beck Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer 42(1) (2001) 261-272.10.1016/S0032-3861(00)00250-0Search in Google Scholar

[82] C.J. Buchko, L.C. Chen, Y. Shen, D.C.Martin, Processing and microstructural characterization of porous biocompatible protein polymer thin films, Polymer 40(26) (1999) 7397-7407.10.1016/S0032-3861(98)00866-0Search in Google Scholar

[83] L. Larrondo, R. St John Manley, Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties, Journal of Polymer Science: Polymer Physics Edition 19(6) (1981) 909-920.Search in Google Scholar

[84] Z. Li, C. Wang, One-dimensional nanostructures: electrospinning technique and unique nanofibers, Springer2013.10.1007/978-3-642-36427-3_1Search in Google Scholar

[85] C. Mit-uppatham, M. Nithitanakul, P. Supaphol, Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter,Macromolecular Chemistry and Physics 205(17) (2004) 2327-2338.Search in Google Scholar

[86] V. Morozov, T. Morozova, N. Kallenbach, Atomic force microscopy of structures produced by electrospraying polymer solutions, International Journal of Mass Spectrometry 178(3) (1998) 143-159.10.1016/S1387-3806(98)14083-6Search in Google Scholar

[87] T. Jarusuwannapoom, W. Hongrojjanawiwat, S. Jitjaicham, L. Wannatong, M. Nithitanakul, C. Pattamaprom, P. Koombhongse, R. Rangkupan, P. Supaphol, Effect of solvents on electrospinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers, European Polymer Journal 41(3) (2005) 409-421.10.1016/j.eurpolymj.2004.10.010Search in Google Scholar

[88] M.M. Demir, I. Yilgor, E. Yilgor, B. Erman, Electrospinning of polyurethane fibers, Polymer 43(11) (2002) 3303-3309. 10.1016/S0032-3861(02)00136-2Search in Google Scholar

[89] H. Fong, I. Chun, D. Reneker, Beaded nanofibers formed during electrospinning, Polymer 40(16) (1999) 4585-4592.10.1016/S0032-3861(99)00068-3Search in Google Scholar

[90] S. Megelski, J.S. Stephens, D.B. Chase, J.F. Rabolt, Micro-and nanostructured surface morphology on electrospun polymer fibers, Macromolecules 35(22) (2002) 8456-8466.10.1021/ma020444aSearch in Google Scholar

[91] J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang, X. Jing, Biodegradable electrospun fibers for drug delivery, Journal of Controlled Release 92(3) (2003) 227-231.10.1016/S0168-3659(03)00372-9Search in Google Scholar

[92] W.K. Son, J.H. Youk, T.S. Lee, W.H. Park, The effects of solutionproperties and polyelectrolyte on electrospinning of ultrafine poly (ethylene oxide) fibers, Polymer 45(9) (2004) 2959-2966.10.1016/j.polymer.2004.03.006Search in Google Scholar

[93] X. Zong, K. Kim, D. Fang, S. Ran, B.S. Hsiao, B. Chu, Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer 43(16) (2002) 4403-4412.10.1016/S0032-3861(02)00275-6Search in Google Scholar

[94] C. Zhang, X. Yuan, L. Wu, Y. Han, J. Sheng, Study on morphology of electrospun poly (vinyl alcohol) mats, European polymer journal 41(3) (2005) 423-432.10.1016/j.eurpolymj.2004.10.027Search in Google Scholar

[95] T. Wang, S. Kumar, Electrospinning of polyacrylonitrile nanofibers, Journal of Applied Polymer Science 102(2) (2006) 1023-1029.10.1002/app.24123Search in Google Scholar

[96] M.M. Arras, C. Grasl, H. Bergmeister, H. Schima, Electrospinning of aligned fiberswith adjustable orientation using auxiliary electrodes, Science and technology of advancedmaterials 13(3) (2012) 035008.10.1088/1468-6996/13/3/035008Search in Google Scholar PubMed PubMed Central

[97] L.M. Bellan, H. Craighead, Control of an electrospinning jet using electric focusing and jet-steering fields, Journal of Vacuum Science & Technology B 24(6) (2006) 3179-3183.10.1116/1.2363403Search in Google Scholar

[98] Z. Ahmad, M. Nangrejo, M. Rasekh, E. Stride, M. Edirisinghe, Novel electrically driven direct-writing methods with managed control on in-situ shape and encapsulation polymer forming, International Journal of Material Forming 6(2) (2013) 281-288.10.1007/s12289-011-1085-0Search in Google Scholar

[99] A. Theron, E. Zussman, A. Yarin, Electrostatic field-assisted alignment of electrospun nanofibres, Nanotechnology 12(3) (2001) 384.10.1088/0957-4484/12/3/329Search in Google Scholar

[100] Y.K. Fuh, S.Z. Chen, Z.Y. He, Direct-write, highly aligned chitosan-poly (ethylene oxide) nanofiber patterns for cell morphology and spreading control, Nanoscale research letters 8(1) (2013) 1-9.10.1186/1556-276X-8-97Search in Google Scholar PubMed PubMed Central

[101] D. Cho, L. Matlock-Colangelo, C. Xiang, P.J. Asiello, A.J. Baeumner, M.W. Frey, Electrospun nanofibers for microfluidic analytical systems, Polymer 52(15) (2011) 3413-3421.10.1016/j.polymer.2011.05.026Search in Google Scholar

[102] J.-H. He, Y. Wu, N. Pang, A mathematical model for preparation by AC-Electrospinning process, International Journal of Nonlinear Sciences and Numerical Simulation 6(3) (2005) 243-248.10.1515/IJNSNS.2005.6.3.243Search in Google Scholar

[103] S. Jana, M. Zhang, Fabrication of 3D aligned nanofibrous tubes by direct electrospinning, Journal ofMaterials Chemistry B 1(20) (2013) 2575-2581.10.1039/c3tb20197jSearch in Google Scholar PubMed

[104] R. Kessick, J. Fenn, G. Tepper, The use of AC potentials in electrospraying and electrospinning processes, Polymer 45(9) (2004) 2981-2984.10.1016/j.polymer.2004.02.056Search in Google Scholar

[105] J. Lee, S.Y. Lee, J. Jang, Y.H. Jeong, D.-W. Cho, Fabrication of patterned nanofibrous mats using direct-write electrospinning, Langmuir 28(18) (2012) 7267-7275. 10.1021/la3009249Search in Google Scholar PubMed

[106] S. Maheshwari, H.C. Chang, Assembly of Multi-Stranded Nanofiber Threads through AC Electrospinning, Advanced Materials 21(3) (2009) 349-354.10.1002/adma.200800722Search in Google Scholar

[107] F.O. Ochanda, M.A. Samaha, H.V. Tafreshi, G.C. Tepper, M. Gadel- Hak, Fabrication of superhydrophobic fiber coatings by DCbiased AC-electrospinning, Journal of Applied Polymer Science 123(2) (2012) 1112-1119.10.1002/app.34583Search in Google Scholar

[108] S. Sarkar, S. Deevi, G. Tepper, Biased AC electrospinning of aligned polymer nanofibers,Macromolecular rapid communications 28(9) (2007) 1034-1039.10.1002/marc.200700053Search in Google Scholar

[109] D. Wang, S. Jayasinghe, M. Edirisinghe, Instrument for electrohydrodynamic print-patterning three-dimensional complex structures, Review of scientific instruments 76(7) (2005) 075105.10.1063/1.1942531Search in Google Scholar

[110] F. Fang, X. Chen, Z. Du, Z. Zhu, X. Chen, H. Wang, P. Wu, Controllable Direct-Writing of Serpentine Micro/Nano Structures via Low Voltage Electrospinning, Polymers 7(8) (2015) 1577-1586.10.3390/polym7081471Search in Google Scholar

[111] Y. Liu, X. Zhang, Y. Xia, H. Yang, Magnetic Field-Assisted Electrospinning of Aligned Straight andWavy Polymeric Nanofibers, Advanced materials (Deerfield Beach, Fla.) 22(22) (2010) 2454-2457.10.1002/adma.200903870Search in Google Scholar PubMed PubMed Central

[112] D. Yang, B. Lu, Y. Zhao, X. Jiang, Fabrication of Aligned Fibrous Arrays by Magnetic Electrospinning, Advanced Materials 19(21) (2007) 3702-3706.10.1002/adma.200700171Search in Google Scholar

[113] Y. Yang, Z. Jia, J. Liu, Q. Li, L. Hou, L. Wang, Z. Guan, Effect of electric field distribution uniformity on electrospinning, Journal of applied physics 103(10) (2008) 104307.10.1063/1.2924439Search in Google Scholar

[114] W. Teo, S. Ramakrishna, A review on electrospinning design and nanofibre assemblies, Nanotechnology 17(14) (2006) R89.10.1088/0957-4484/17/14/R01Search in Google Scholar PubMed

[115] C. Chang, V.H. Tran, J.Wang, Y.-K. Fuh, L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion eflciency, Nano letters 10(2) (2010) 726-731.10.1021/nl9040719Search in Google Scholar PubMed

[116] P.D. Dalton, D. Klee, M. Möller, Electrospinning with dual collection rings, Polymer 46(3) (2005) 611-614.10.1016/j.polymer.2004.11.075Search in Google Scholar

[117] S. Sell, M. McClure, C. Ayres, D. Simpson, G. Bowlin, Preliminary investigation of airgap electrospun silk-fibroin-based structures for ligament analogue engineering, Journal of Biomaterials Science, Polymer Edition 22(10) (2011) 1253-1273.10.1163/092050610X504251Search in Google Scholar PubMed

[118] C. Tafur,MacIssac, D., Right-Hand Rules: A Guide to finding the Direction of the Magnetic Force. 2016 (accessed 08/02/2016.).Search in Google Scholar

[119] G. Müller, Magnetic Field on the Axis of a Solenoid. <http://www.phys.uri.edu/gerhard/PHY204/tsl215.pdf>, 2008 (accessed 02/02/2016.).Search in Google Scholar

[120] P.M. Fishbane, S.G. Gasiorowicz, S.T. Thornton, Physics for scientists and engineers, Prentice-Hall1993.Search in Google Scholar

[121] K. Muramatsu, T. Okitsu, H. Fujitsu, F. Shimanoe, Method of nonlinear magnetic field analysis taking into account eddy current in laminated core, IEEE Transactions on Magnetics 40(2) (2004) 896-899. 10.1109/TMAG.2004.825193Search in Google Scholar

[122] C.A. D, L. Edward, Z.O. J, Television camera including an image isocon tube, Google Patents, 1969.Search in Google Scholar

[123] H. Hisayuki, K. Hirokazu, M. Michiyoshi, T. Hifumi, Scanning electron microscope, Google Patents, 1969.Search in Google Scholar

[124] C. Chen, B.T. Mehl, S.A. Sell, R.S. Martin, Use of electrospinning and dynamic air focusing to create three-dimensional cell culture scaffolds in microfluidic devices, Analyst 141(18) (2016) 5311-5320.10.1039/C6AN01282ESearch in Google Scholar

[125] G.L. Bowlin, Enhanced porosity without compromising structural integrity: the nemesis of electrospun scaffolding, Journal of Tissue Science & Engineering (2011).10.4172/2157-7552.1000103eSearch in Google Scholar

[126] M.J. McClure, P.S. Wolfe, D.G. Simpson, S.A. Sell, G.L. Bowlin, The use of air-flow impedance to control fiber deposition patterns during electrospinning, Biomaterials 33(3) (2012) 771-9.10.1016/j.biomaterials.2011.10.011Search in Google Scholar PubMed

[127] S. Selders Gretchen, E. Fetz Allison, L. Speer Shannon, L. Bowlin Gary, Fabrication and characterization of air-impedance electrospun polydioxanone templates, Electrospinning, 2016, p. 20.10.1515/esp-2016-0003Search in Google Scholar

[128] A. Yin, J. Li, G.L. Bowlin, D. Li, I.A. Rodriguez, J. Wang, T. Wu, H.A. Ei-Hamshary, S.S. Al-Deyab, X. Mo, Fabrication of cell penetration enhanced poly (l-lactic acid-co-varepsiloncaprolactone)/ silk vascular scaffolds utilizing air-impedance electrospinning, Colloids and surfaces. B, Biointerfaces 120 (2014) 47-54.10.1016/j.colsurfb.2014.04.011Search in Google Scholar PubMed

[129] S.W. Suh, J.Y. Shin, J. Kim, C.H. Beak, D.I. Kim, H. Kim, S.S. Jeon, I.W. Choo, Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique, ASAIO J 48(5) (2002) 460-4.10.1097/00002480-200209000-00003Search in Google Scholar PubMed

[130] J. Nam, Y. Huang, S. Agarwal, J. Lannutti, Improved cellular infiltration in electrospun fiber via engineered porosity, Tissue engineering 13(9) (2007) 2249-57.10.1089/ten.2006.0306Search in Google Scholar PubMed PubMed Central

[131] T.G. Kim, H.J. Chung, T.G. Park, Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles, Acta biomaterialia 4(6) (2008) 1611-9.10.1016/j.actbio.2008.06.008Search in Google Scholar PubMed

[132] Y.H. Lee, J.H. Lee, I.G. An, C. Kim, D.S. Lee, Y.K. Lee, J.D. Nam, Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds, Biomaterials 26(16) (2005) 3165-72.10.1016/j.biomaterials.2004.08.018Search in Google Scholar PubMed

[133] M.C. Phipps, W.C. Clem, J.M. Grunda, G.A. Clines, S.L. Bellis, Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration, Biomaterials 33(2) (2012) 524-34.10.1016/j.biomaterials.2011.09.080Search in Google Scholar PubMed PubMed Central

[134] B.M. Baker, R.P. Shah, A.M. Silverstein, J.L. Esterhai, J.A. Burdick, R.L.Mauck, Sacrificial nanofibrous composites provide instruction without impediment and enable functional tissue formation, Proceedings of the National Academy of Sciences of the United States of America 109(35) (2012) 14176-81.10.1073/pnas.1206962109Search in Google Scholar PubMed PubMed Central

[135] L.C. Ionescu, G.C. Lee, B.J. Sennett, J.A. Burdick, R.L.Mauck, An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering, Biomaterials 31(14) (2010) 4113-20.10.1016/j.biomaterials.2010.01.098Search in Google Scholar PubMed PubMed Central

[136] K. Wang, M. Xu, M. Zhu, H. Su, H. Wang, D. Kong, L. Wang, Creation of macropores in electrospun silk fibroin scaffolds using sacrificial PEO-microparticles to enhance cellular infiltration, Journal of Biomedical Materials Research Part A 101(12) (2013) 3474-3481.10.1002/jbm.a.34656Search in Google Scholar PubMed

[137] N.E. Zander, J.A. Orlicki, A.M. Rawlett, T.P. Beebe, Electrospun polycaprolactone scaffolds with tailored porosity using two approaches for enhanced cellular infiltration, Journal of Materials Science: Materials in Medicine 24(1) (2013) 179-187.Search in Google Scholar

[138] B.M. Baker, A.O. Gee, R.B. Metter, A.S. Nathan, R.A. Marklein, J.A. Burdick, R.L. Mauck, The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers, Biomaterials 29(15) (2008) 2348-2358.10.1016/j.biomaterials.2008.01.032Search in Google Scholar PubMed PubMed Central

[139] L. Wright, T. Andric, J. Freeman, Utilizing NaCl to increase the porosity of electrospun materials, Materials Science and Engineering: C 31(1) (2011) 30-36.Search in Google Scholar

[140] H. Awad, TENDON TISSUE ENGINEERING, (2012). 10.5960/dzsm.2012.014Search in Google Scholar

[141] J. Wu, S. Liu, L. He, H. Wang, C. He, C. Fan, X. Mo, Electrospun nanoyarn scaffold and its application in tissue engineering,Materials Letters 89 (2012) 146-149.10.1016/j.matlet.2012.08.141Search in Google Scholar

[142] J.Wu, C. Huang,W. Liu, A. Yin,W. Chen, C. He, H.Wang, S. Liu, C. Fan, G.L. Bowlin, Cell infiltration and vascularization in porous nanoyarn scaffolds prepared by dynamic liquid electrospinning, Journal of biomedical nanotechnology 10(4) (2014) 603-614.10.1166/jbn.2014.1733Search in Google Scholar PubMed

[143] Y. Xu, J. Wu, H. Wang, H. Li, N. Di, L. Song, S. Li, D. Li, Y. Xiang, W. Liu, Fabrication of Electrospun Poly (L-Lactide-co-"- Caprolactone)/Collagen Nanoyarn Network as a Novel, Three- Dimensional, Macroporous, Aligned Scaffold for Tendon Tissue Engineering, Tissue Engineering Part C: Methods 19(12) (2013) 925-936.Search in Google Scholar

[144] Y. Xu, S. Dong, Q. Zhou, X. Mo, L. Song, T. Hou, J. Wu, S. Li, Y. Li, P. Li, The effect of mechanical stimulation on the maturation of TDSCs-poly (L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering, Biomaterials 35(9) (2014) 2760-2772.10.1016/j.biomaterials.2013.12.042Search in Google Scholar PubMed

[145] M. Simonet,O.D. Schneider, P. Neuenschwander,W.J. Stark, Ultraporous 3D polymer meshes by low-temperature electrospinning: use of ice crystals as a removable void template, Polymer Engineering & Science 47(12) (2007) 2020-2026.Search in Google Scholar

[146] M.F. Leong, M.Z. Rasheed, T.C. Lim, K.S. Chian, In vitro cell infiltrationand in vivo cell infiltration and vascularization in a fibrous, highly porous poly (D, L-lactide) scaffold fabricated by cryogenic electrospinning technique, Journal of biomedicalmaterials research Part A 91(1) (2009) 231-240.10.1002/jbm.a.32208Search in Google Scholar PubMed

[147] M.F. Leong, W.Y. Chan, K.S. Chian, M.Z. Rasheed, J.M. Anderson, Fabrication and in vitro and in vivo cell infiltration study of a bilayered cryogenic electrospun poly(D,L-lactide) scaffold, Journal of biomedicalmaterials research. Part A 94(4) (2010) 1141-9.10.1002/jbm.a.32795Search in Google Scholar PubMed

[148] J.T. McCann, M. Marquez, Y. Xia, Highly porous fibers by electrospinning into a cryogenic liquid, Journal of the American Chemical Society 128(5) (2006) 1436-1437.10.1021/ja056810ySearch in Google Scholar PubMed

[149] V.S. Joshi, N.Y. Lei, C.M. Walthers, B. Wu, J.C. Dunn, Macroporosity enhances vascularization of electrospun scaffolds, The Journal of surgical research 183(1) (2013) 18-26.10.1016/j.jss.2013.01.005Search in Google Scholar PubMed PubMed Central

[150] B.L. Lee, H. Jeon, A. Wang, Z. Yan, J. Yu, C. Grigoropoulos, S. Li, Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds, Acta biomaterialia 8(7) (2012) 2648-58.10.1016/j.actbio.2012.04.023Search in Google Scholar PubMed PubMed Central

[151] H. Huang, Z. Guo, Human dermis separation via ultra-short pulsed laser plasma-mediated ablation, Journal of Physics D: Applied Physics 42(16) (2009) 165204.Search in Google Scholar

[152] S. Zhong, Y. Zhang, C.T. Lim, Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review, Tissue engineering. Part B, Reviews 18(2) (2012) 77-87.Search in Google Scholar

[153] H. woon Choi, J.K. Johnson, J. Nam, D.F. Farson, J. Lannutti, Structuring electrospun polycaprolactone nanofiber tissue scaffolds by femtosecond laser ablation, Journal of Laser Applications 19(4) (2007) 225-231.10.2351/1.2795749Search in Google Scholar

[154] J. Lannutti, D. Reneker, T. Ma, D. Tomasko, D. Farson, Electrospinning for tissue engineering scaffolds, Materials Science and Engineering: C 27(3) (2007) 504-509.Search in Google Scholar

[155] B.A. Blakeney, A. Tambralli, J.M. Anderson, A. Andukuri, D.J. Lim, D.R. Dean, H.W. Jun, Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold, Biomaterials 32(6) (2011) 1583-90.10.1016/j.biomaterials.2010.10.056Search in Google Scholar PubMed PubMed Central

[156] W. Chen, S. Chen, Y. Morsi, H. El-Hamshary, M. El-Newhy, C. Fan, X. Mo, Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering, ACS Applied Materials & Interfaces 8(37) (2016) 24415-24425.10.1021/acsami.6b06825Search in Google Scholar PubMed

[157] W. Chen, J. Ma, L. Zhu, Y. Morsi, E.-H. Hany, S.S. Al-Deyab, X. Mo, Superelastic, superabsorbent and 3D nanofiber-assembled scaffold for tissue engineering, Colloids and Surfaces B: Biointerfaces 142 (2016) 165-172.10.1016/j.colsurfb.2016.02.050Search in Google Scholar PubMed

Received: 2017-4-7
Accepted: 2017-6-18
Published Online: 2017-9-2
Published in Print: 2017-8-28

© 2017

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Scroll Up Arrow