Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access October 12, 2017

Correlation between electrospinning parameters and magnetic properties of BiFeO3 nanofibers

Guilherme H. F. Melo, João P. F. Santos, Alexandre J. Gualdi, Chieh-Ming Tsai, Wolfgang M. Sigmund and Rosario E. S. Bretas
From the journal Electrospinning

Abstract

BiFeO3 nanofibers of different morphologies and dimensions were produced by electrospinning varying the collector and thermal treatment. By thermogravimetric analyses (TGA) the thermal behavior of the as-spun nanofiberswas studied. The morphology of the nanofibers was examined by transmission and scanning electron microscopy (TEM and SEM, respectively) while the chemical composition and crystal structure were analyzed by energy dispersive x-ray spectrometry (EDS) and wide angle x-ray diffraction (WAXD). A vibrating sample magnetometer (VSM) was used to evaluate the magnetic properties. Different types of mats with different nanofibers´ dimensions were obtained; while some nanofibers were interconnected, otherswere completely separated and aligned. The thinnest nanofiberswere obtained using an aluminum substrate with folds and after annealing at 550∘C. All samples annealed at this temperature formed pure BiFeO3, while samples annealed at 550 and 750∘C formed an additional Bi2Fe4O9 phase. No iron impurities were detected; the crystallite size of all the nanofibers was between 30 and 36 nm. The saturation magnetization increased with the decrease of the nanofiber´s diameter and increase of nanofibers interconnectivity. Thus, this ferromagnetism behavior was attributed to the suppression of the spiral spin structure of BiFeO3 (which has a 62 nm period) and to the morphology of interconnected nanofibers.

References

[1] W. Eerenstein, N.D. Mathur and J.F. Scott, Multiferroic and magnetoelectric materials, Nature, 442, 2006,759.10.1038/nature05023Search in Google Scholar PubMed

[2] C. Ederer and N.A.Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite, Phys.Review B, 71, 2005, 060401(R).10.1103/PhysRevB.71.060401Search in Google Scholar

[3] Algueró M, Gregg J.M. and Mitoseriu L., Nanoscale Ferrolectrics and Multiferroics: Key Processing and Characterization issues, and Nanoscale effects, Vol. 1, 1st ed., John Wiley & Sons Ltd., West Sussex, U.K, 2016.10.1002/9781118935743Search in Google Scholar

[4] F. Zavaliche, S.Y. Yang, T. Zhao, Y.H. Chu, M.P. Cruz, C.B. Eom and R. Ramesh,Multiferroic BiFeO3 films: domain structure and polarization dynamics, Phase Transitions, 79, 12, 2006, 991.10.1080/01411590601067144Search in Google Scholar

[5] T. Rojac, A. Bencan, G. Drazic, N. Sakamoto, H. Ursic, B. Jancar, G.Tavcar, M. Makarovic, J. Walker, B. Malic and D. Damjanovic, Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects, Nature Materials, 16, 2017,322.10.1038/nmat4799Search in Google Scholar PubMed

[6] M. Coll, J. Gazquez, I. Fina, Z. Khayat, A. Quindeau, M. Alexe, M.Varela, S. Trolier-, McKinstry, X. Obradors and T. Puig, Nanocrystalline ferroelectric BiFeO3 thin films by low-temperature atomic layer deposition, Chem.Mater., 27, 2015,6322.Search in Google Scholar

[7] S. Hong, T. Choi, J.H. Jeon, Y. Kim, H. Lee, H.Y. Joo, I. Hwang, J.S. Kim, S.O. Kang, S.V. Kalinin and B.H. Park, Large resistive switching in ferroelectric BiFeO3 nano-island based switchable diodes, Adv.Mater., 25, 2013, 2339.Search in Google Scholar

[8] J. Wu, S. Mao, Z.G. Ye, Z. Xie and L. Zheng, Room-temperature ferromagnetic/ferroelectric BiFeO3 synthesized by a selfcatalyzed fast reaction process, J.Mater.Chem., 20, 2010, 6512.Search in Google Scholar

[9] Q. Xu, X. Zheng, Z. Wen, Y. Yang, D. Wu and M. Xu, Enhanced room temperature ferromagnetism in porous BiFeO3 prepared using cotton templates, Solid State Communications, 151, 2011,62.10.1016/j.ssc.2011.01.029Search in Google Scholar

[10] E.M.M. Ibrahim, G. Farghal, M.M. Khalaf and H.M.A. El-Lateef, Effect of calcination temperature onmagnetic and electrical properties of BiFeO3 nanoparticles prepared by sol-gel method., J.Nano.Adv.Mat.,5,1, 2017,33.Search in Google Scholar

[11] Q. Xu, C. Hu, J. Wang and J. Du, Enhanced ferromagnetism in BiFeO3 powders by rapid combustion of graphite powders, AIP Adv., 7, 2017, 055803.10.1063/1.4972806Search in Google Scholar

[12] S.Y. Yang, L.W. Martin, S.J. Byrnes, T.E. Conry, S.R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y.H. Chu, C.H. Yang, J.L. Musfeldt, D.G. Schlom, J.W. Ager III and R. Ramesh, Photovoltaic effects in BiFeO3, Appl.Phys.Lett., 95, 2009, 062909.10.1063/1.3204695Search in Google Scholar

[13] H.T. Yi, T. Choi, S.G. Choi, Y.S. Oh and S.W. Cheong, Mechanism of the switchable photovoltaic effect in ferroelectric BiFeO3, Adv.Mater., 23, 2011, 3403.Search in Google Scholar

[14] S. Sharma, M. Tomar, A. Kumar, N.K. Puri and V. Gupta, Photovoltaic effect in BiFeO3 multilayer structure fabricated by chemical solution deposition technique, J.Phys.Chem.Solids, 93, 2016, 63.10.1016/j.jpcs.2016.02.010Search in Google Scholar

[15] T. Zhao, A. Scholl, F. Zavaliche, K.Lee, M. Barry, A. Doran, M.P. Cruz, Y.H. Chu, C. Ederer, N.A. Spaldin, R.R. Das, D.M.Kim, S.H. Baek, C.B. Eom and R. Ramesh, Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature, Nature Materials, 5, 2006, 823.10.1038/nmat1731Search in Google Scholar PubMed

[16] X. Ke, P.P. Zhang, S.H. Baek, J. Zarestky, W. Tian and C.B. Eom, Magnetic structure of epitaxialmultiferroic BiFeO3 filmswith engineered ferroelectric domains, Phys.Rev.B., 82, 2010,134448.10.1103/PhysRevB.82.134448Search in Google Scholar

[17] I. Sosnowska, T. Peterlin-Neumaier and E. Steichele, Spiralmagnetic ordering in bismuth ferrite, J.Phys.C: Solid State Phys.,15, 1982, 4835.Search in Google Scholar

[18] V.G. Prokhorov, G. G. Kaminsky, J.M. Kim, T.W. Eom, J.S. Park, Y.P. Lee and V.L. Svetchnikov, Evidence of non-Dzyaloshinskii-Moriya ferromagnetism in epitaxial BiFeO3 films, Low Temp.Physics, 37, 2011, 2.10.1063/1.3555838Search in Google Scholar

[19] R. Mazumder, P.S.Devi, D. Bhattacharya, P. Choudhury, A. Sen and M. Raja, Ferromagnetism in nanoscale BiFeO3, Appl.Phys.Lett. 91, 2007,062510.10.1063/1.2768201Search in Google Scholar

[20] T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R.Moodenbaugh and S.S. Wong, Size-dependent magnetic properties of singlecrystalline multiferroic BiFeO3 nanoparticles, Nano Lett., 7, 3, 2007,766.10.1021/nl063039wSearch in Google Scholar PubMed

[21] F. Gao, X.Chen, K.Yin, S. Dong, Z. Ren, F.Yuan, T.Yu, Z. Zou and J.M. Liu, Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles, Adv.Mater., 19, 2007,2889.Search in Google Scholar

[22] S. Basu, M. Pal and D. Chakravorty, Magnetic properties of hydrothermally synthesized BiFeO3 nanoparticles, J.Magnetism and Magnetic Materials, 320, 2008, 3361.Search in Google Scholar

[23] F. Huang, Z. Wang, X. Lu, J. Zhang, K. Min, W. Lin, R. Ti, T.T.Xu, J.He, C.Yue and J. Zhu, Peculiar magnetism of BiFeO3 nanoparticles approaching the period of the spiral spin structure, Sci.Rep.3, 2907, 2013, DOI: 10.1038/srep02907.10.1038/srep02907Search in Google Scholar PubMed PubMed Central

[24] B. Bhushan, A. Basumallick, S.K. Bandopadhyay, N.Y. Vasanthacharya and D. Das, Effect of alkaline earth metal doping on thermal, optical, magnetic and dielectric properties of BiFeO3 nanoparticles, J.Phys. D: Appl.Phys., 42, 2009, 065004.10.1088/0022-3727/42/6/065004Search in Google Scholar

[25] H. Hojo, R.Kawabe, K. Shimizu, H. Yamamoto, K. Mibu, K. Samanta, T. Saha-Dasgupta and M. Azuma, Ferromagnetism at room temperature induced by spin structure change in BiFe1−xCoxO3 thin films, Adv.Mater., 29, 2017,1603131.10.1002/adma.201603131Search in Google Scholar PubMed

[26] W. Wang, N. Li, Y. Chi, Y. Li, W. Yan, X. Li and C. Shao, Electrospinning of magnetical bismuth ferrite nanofibers with photocatalytic activity, Ceramics International, 39, 2013,3511.Search in Google Scholar

[27] A. Baji, Y.W. Mai, Q. Li, S.C. Wong, Y. Liu, and O.W. Yao, Onedimensionalmultiferroic bismuth ferrite fibers obtained by electrospinning techniques, Nanotechnology, 22, 2011, 235702.10.1088/0957-4484/22/23/235702Search in Google Scholar PubMed

[28] J.H. Song, J.H. Nam, J.H. Cho, B.I. Kim, M.P.Chun and D.K.Choi, Microstructures and multiferroic properties of electrospun BiFeO3 nanofibers, J.Korean Phys.Soc., 59, 3, 2011,2308.Search in Google Scholar

[29] L. Wu, W. Sui, C. Dong, C. Zhang and C. Jiang, One-dimensional BiFeO3 nanotubes: Preparation, characterization, improved magnetic behaviors, and prospects, Appl. Surface Sci., 384, 2016,368.10.1016/j.apsusc.2016.05.043Search in Google Scholar

[30] M. Sakar, S. Balakumar, P. Saravanan and S.N. Jaisankar, Electric field induced formation of one-dimensional bismuth ferrite (BiFeO3) nanostructures in electrospinning process, Materials and Design, 94, 2016, 487.10.1016/j.matdes.2016.01.029Search in Google Scholar

[31] L.M. Guerrini, M.C. Branciforti, T. Canova and R.E.S. Bretas , Electrospinning and characterization of polyamide 66 nanofibers with different molecular weights, Mater.Res., 12, 2, 2009,181.10.1590/S1516-14392009000200012Search in Google Scholar

[32] A.B. da Silva and R.E.S. Bretas, Preparation and characterization of PA6/PAni-TSA nanofibers, Synth.Met., 162, 2012,1537.Search in Google Scholar

[33] J.P.F. Santos, A.B. da Silva, U. Sundararaj and R.E.S. Bretas, Novel electrical conductive hybrid nanostructures based on PA6/MWCNTCOOH electrospun nanofibers and anchored MWCNTCOOH, Polym.Eng.Sci., 55, 2015,1263.Search in Google Scholar

[34] J.M.F. Jabal, L. McGarry, A. Sobczyk and D.E. Aston, Wettability of electrospun poly (vinylpyrrolidone)-titania fiber mats on glass and ITO substrates in aqueous media, Appl. Mater.& Interf., 1, 10, 2009,2325.Search in Google Scholar

[35] J.M.F. Jabal, L. McGarry, A. Sobczyk and D.E. Aston, Substrate effects on the wettability of electrospun titania-poly (vinylpyrrolidone) fiber mats, Langmuir, 26, 16, 2010,13550.10.1021/la1017399Search in Google Scholar PubMed

[36] T. Uemura and S. Kitagawa, Prussian blue nanoparticles protected by poly (vinylpyrrolidone), J.Amer. Chem.Soc., 125, 2003,7814.Search in Google Scholar

[37] N. Sakulchaicharoen, D.M. O´Carroll and J.E. Herrera, Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles, J.Cont.Hydrology, 118, 2010,117.10.1016/j.jconhyd.2010.09.004Search in Google Scholar PubMed

[38] B.A. Rozenberg and R. Tenne, Polymer-assisted fabrication of nanoparticles and nanocomposites, Prog.Polym.Sci., 33, 2008, 40.10.1016/j.progpolymsci.2007.07.004Search in Google Scholar

[39] W. Kim, C.Y. Suh, S.W. Cho, K.M. Roh, H.Kwon, K.Song and I.J. Shon, A new method for the identification and quantification of magnetite-maghemite mixture using conventional X-ray diffraction technique, Talanta, 94, 2012, 348.10.1016/j.talanta.2012.03.001Search in Google Scholar PubMed

[40] S. Layek and H.C. Verma, Magnetic and dielectric properties of multiferroic BiFeO3 nanoparticles synthesized by a novel citrate combustion method, Adv.Mat.Lett., 3, 6, 533, 2012.Search in Google Scholar

[41] I.K. Batttisha, I.S.A. Farag, M. Kamal, M. A. Ahmed, E. Girgis, H.A. El Meleegi and F. El Desouki, Dielectric and magnetic properties of nano-structure BiFeO3 doped with different concentrations of Co ions prepared by sol-gel method, New J.Glass and Ceramics, 5, 2015, 59.10.4236/njgc.2015.53008Search in Google Scholar

[42] S. Schwung, A. Rogov, G. Clarke, C. Joulaud, T. Magouroux, D. Staedler, S. Passemard, T. Justel, L. Badie, C. Galez, J.P. Wolf, Y.Volkov, A. Prina-Mello, S. Gerber-Lemaire, D. Rytz, Y.Mugnier, L. Bonacina and R.L.Dantec, Non-linear optical and magnetic properties of BiFeO3 harmonic nanoparticles, J.Appl.Phys., 116, 2014,114306.10.1063/1.4895836Search in Google Scholar

[43] X. Zhang, H. Liu, B. Zheng, Y. Lin, D. Liu and C.W. Nan, Photocatalytic andmagnetic behaviors observed in BiFeO3 nanofibers by electrospinning, J.Nanomaterials, 2013, 917948.10.1155/2013/917948Search in Google Scholar

[44] S. Bharathkumar, M. Sakar, R.Vinod and S. Balakumar, Versatility of electrospinning in the fabrication of fibrousmat and mesh nanostructures of bismuth ferrite (BiFeO3) and their magnetic and photocatalytic activities, Phys.Chem.Phys., 17, 2015,17745.10.1039/C5CP01640ASearch in Google Scholar

[45] S.H. Xie, J.Y. Li, R. Proksch, Y.M. Liu, Y.C. Zhou, Y.Y. Liu, Y. Ou, L.N. Lan and Y. Qiao, Nanocrystalline multiferroic BiFeO3 ultrafine fibers by sol-gel based electrospinning, Appl.Phys.Lett., 93, 2008, 222904.10.1063/1.3040010Search in Google Scholar

Received: 2017-5-16
Accepted: 2017-7-16
Published Online: 2017-10-12
Published in Print: 2017-10-26

© 2017

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Scroll Up Arrow