Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access September 25, 2018

Solvent Retention in Electrospun Fibers Affects Scaffold Mechanical Properties

Anthony R. D’Amato , Michael T. K. Bramson , David T. Corr , Devan L. Puhl , Ryan J. Gilbert and Jed Johnson
From the journal Electrospinning


Electrospinning is a robust material fabrication method allowing for fine control of mechanical, chemical, and functional properties in scaffold manufacturing. Electrospun fiber scaffolds have gained prominence for their potential in a variety of applications such as tissue engineering and textile manufacturing, yet none have assessed the impact of solvent retention in fibers on the scaffold’s mechanical properties. In this study, we hypothesized that retained electrospinning solvent acts as a plasticizer, and gradual solvent evaporation, by storing fibers in ambient air, will cause significant increases in electrospun fiber scaffold brittleness and stiffness, and a significant decrease in scaffold toughness. Thermogravimetric analysis indicated solvent retention in PGA, PLCL, and PET fibers, and not in PU and PCL fibers. Differential scanning calorimetry revealed that polymers that were electrospun below their glass transition temperature (Tg) retained solvent and polymers electrospun above Tg did not. Young’s moduli increased and yield strain decreased for solventretaining PGA, PLCL, and PET fiber scaffolds as solvent evaporated from the scaffolds over a period of 14 days. Toughness and failure strain decreased for PGA and PET scaffolds as solvent evaporated. No significant differences were observed in the mechanical properties of PU and PCL scaffolds that did not retain solvent. These observations highlight the need to consider solvent retention following electrospinning and its potential effects on scaffold mechanical properties.


[1] C. Zhang, X.Wang, E. Zhang, L. Yang, H. Yuan,W. Tu, H. Zhang, Z. Yin,W. Shen, X. Chen, Y. Zhang, H. Ouyang, An epigenetic bioactive composite scaffold with well-aligned nanofibers for functional tendon tissue engineering, Acta Biomater. 66 (2018) 141-156. doi: 10.1016/j.actbio.2017. in Google Scholar

[2] J. Baek, S. Sovani, W. Choi, S. Jin, S.P. Grogan, D.D. D’Lima, Meniscal Tissue Engineering Using Aligned Collagen Fibrous Scaffolds: Comparison of Different Human Cell Sources, Tissue Eng. Part A. 24 (2017) 81-93. doi: 10.1089/ten.tea.2016.0205.10.1089/ten.tea.2016.0205Search in Google Scholar

[3] L. Jiang, L. Wang, N. Wang, S. Gong, L. Wang, Q. Li, C. Shen, L.-S. Turng, Fabrication of polycaprolactone electrospun fibers with different hierarchical structures mimicking collagen fibrils for tissue engineering scaffolds, Appl. Surf. Sci. 427 (2018) 311-325. doi: 10.1016/j.apsusc.2017. in Google Scholar

[4] B.M. Young, K. Shankar, B.P. Allen, R.A. Pouliot, M.B. Schneck, N.S. Mikhaiel, R.L. Heise, Electrospun Decellularized Lung Matrix Scaffold for Airway Smooth Muscle Culture, ACS Biomater. Sci. Eng. 3 (2017) 3480-3492. doi: 10.1021/acsbiomaterials.7b00384.10.1021/acsbiomaterials.7b00384Search in Google Scholar

[5] D.S. Puperi, A. Kishan, Z.E. Punske, Y. Wu, E. Cosgriff- Hernandez, J.L. West, K.J. Grande-Allen, Electrospun Polyurethane and Hydrogel Composite Scaffolds as Biomechanical Mimics for Aortic Valve Tissue Engineering, ACS Biomater. Sci. Eng. 2 (2016) 1546-1558. doi: 10.1021/acsbiomaterials.6b00309.10.1021/acsbiomaterials.6b00309Search in Google Scholar

[6] X. Hu, S. Liu, G. Zhou, Y. Huang, Z. Xie, X. Jing, Electrospinning of polymeric nanofibers for drug delivery applications, J. Controlled Release. 185 (2014) 12-21. doi: 10.1016/j.jconrel.2014.04.018. [7] S. Liu, G. Pan, G. Liu, J. das Neves, S. Song, S. Chen, B. Cheng, Z. Sun, B. Sarmento, W. Cui, C. Fan, Electrospun fibrous membranes featuring sustained release of ibuprofen reduce adhesion and improve neurological function following lumbar laminectomy, J. Controlled Release. 264 (2017) 1-13. doi: 10.1016/j.jconrel.2017.[7]S....das.......fibrouslumbarlaminectomy..264(2017)1-13.doi:10.1016/j.jconrel.2017.08.011Search in Google Scholar

[8] Y.-H. Hsu, C.-H. Chan, W.C. Tang, Alignment of Multiple Electrospun Piezoelectric Fiber Bundles Across Serrated Gaps at an Incline: A Method to Generate Textile Strain Sensors, Sci. Rep. 7 (2017). doi: 10.1038/s41598-017-15698-7.10.1038/s41598-017-15698-7Search in Google Scholar

[9] K.T. Peter, A.J. Johns, N.V.Myung, D.M. Cwiertny, Functionalized polymer-iron oxide hybrid nanofibers: Electrospun filtration devices for metal oxyanion removal, Water Res. 117 (2017) 207-217. doi: 10.1016/j.watres.2017. in Google Scholar

[10] B. Zhang, X. Yan, H.-W. He, M. Yu, X. Ning, Y.-Z. Long, Solventfree electrospinning: opportunities and challenges, Polym. Chem. 8 (2017) 333-352. doi: 10.1039/C6PY01898J.10.1039/C6PY01898JSearch in Google Scholar

[11] J. Nam, Y. Huang, S. Agarwal, J. Lannutti, Materials selection and residual solvent retention in biodegradable electrospun fibers, J. Appl. Polym. Sci. 107 (2008) 1547-1554. doi: 10.1002/app.27063.10.1002/app.27063Search in Google Scholar

[12] A.R. D’Amato, N.J. Schaub, J.M. Cardenas, E. Franz, D. Rende, A.M. Ziemba, R.J. Gilbert, Evaluation of procedures to quantify solvent retention in electrospun fibers and facilitate solvent removal, Fibers Polym. 18 (2017) 483-492. doi: 10.1007/s12221-017-1061-5.10.1007/s12221-017-1061-5Search in Google Scholar

[13] A.R. D’Amato, N.J. Schaub, J.M. Cardenas, A.S. Fiumara, P.M. Troiano, A. Fischetti, R.J. Gilbert, Removal of retained electrospinning solvent prolongs drug release from electrospun PLLA fibers, Polymer. 123 (2017) 121-127. doi: 10.1016/j.polymer.2017. in Google Scholar

[14] M. Rahman, C.S. Brazel, The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges, Prog. Polym. Sci. 29 (2004) 1223-1248. doi: 10.1016/j.progpolymsci.2004. in Google Scholar

[15] N.J. Schaub, A.R. D’Amato, A. Mason, D.T. Corr, E.Y. Harmon, M.R. Lennartz, R.J. Gilbert, The effect of engineered nanotopography of electrospun microfibers on fiber rigidity and macrophage cytokine production, J. Biomater. Sci. Polym. Ed. 28 (2017) 1303-1323. doi: 10.1080/09205063.2017.1321345.10.1080/09205063.2017.1321345Search in Google Scholar

[16] N.J. Schaub, T. Britton, R. Rajachar, R.J. Gilbert, Engineered Nanotopography on Electrospun PLLA Microfibers Modifies RAW 264.7 Cell Response, ACS Appl. Mater. Interfaces. 5 (2013) 10173-10184. doi: 10.1021/am402827g.10.1021/am402827gSearch in Google Scholar

[17] C.E. Ayres, B. Shekhar Jha, H. Meredith, J.R. Bowman, G.L. Bowlin, S.C. Henderson, D.G. Simpson, Measuring fiber alignment in electrospun scaffolds: a user’s guide to the 2D fast Fourier transform approach, J. Biomater. Sci. - Polym. Ed. 19 (2008) 603-621. doi: 10.1163/156856208784089643.10.1163/156856208784089643Search in Google Scholar

[18] K. Mubyana, R.A. Koppes, K.L. Lee, J.A. Cooper, D.T. Corr, The influence of specimen thickness and alignment on the material and failure properties of electrospun polycaprolactone nanofiber mats, J. Biomed. Mater. Res. A. 104 (2016) 2794-2800. doi: 10.1002/jbm.a.35821.10.1002/jbm.a.35821Search in Google Scholar

[19] T. Stylianopoulos, C.A. Bashur, A.S. Goldstein, S.A. Guelcher, V.H. Barocas, Computational predictions of the tensile properties of electrospun fibre meshes: Effect of fibre diameter and fibre orientation, J. Mech. Behav. Biomed. Mater. 1 (2008) 326-335. doi: 10.1016/j.jmbbm.2008. in Google Scholar

[20] M.J. McClure, S.A. Sell, C.E. Ayres, D.G. Simpson, G.L. Bowlin, Electrospinning-aligned and random polydioxanone- polycaprolactone-silk fibroin-blended scaffolds: geometry for a vascular matrix, Biomed. Mater. 4 (2009) 055010. doi: 10.1088/1748-6041/4/5/055010.10.1088/1748-6041/4/5/055010Search in Google Scholar

[21] F. Tihminlioglu, R.P. Danner, Solvent diffusion in amorphous polymers: Polystyrene-solvent systems, J. Polym. Sci. Part B Polym. Phys. 38 (2000) 1965-1974. doi: 10.1002/1099- 0488(20000801)38:15<1965::AID-POLB20>3.0.CO;2-P.10.1002/1099-0488(20000801)38:15<1965::AID-POLB20>3.0.CO;2-Search in Google Scholar

[22] M. Baiardo, G. Frisoni, M. Scandola, M. Rimelen, D. Lips, K. Rufleux, E. Wintermantel, Thermal and mechanical properties of plasticized poly(L-lactic acid), J. Appl. Polym. Sci. 90 (2003) 1731-1738. doi: 10.1002/app.12549.10.1002/app.12549Search in Google Scholar

[23] M.P. Lutolf, P.M. Gilbert, H.M. Blau, Designing materials to direct stem-cell fate, Nature. 462 (2009) 433-441. doi: 10.1038/nature08602.10.1038/08602Search in Google Scholar

[24] A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification, Cell. 126 (2006) 677-689. doi: 10.1016/j.cell.2006. in Google Scholar

[25] S.-S. Kim, M. Sun Park, O. Jeon, C. Yong Choi, B.-S. Kim, Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering, Biomaterials. 27 (2006) 1399-1409. doi: 10.1016/j.biomaterials.2005. in Google Scholar

[26] R. Capone, F.G. Quiroz, P. Prangkio, I. Saluja, A.M. Sauer, M.R. Bautista, R.S. Turner, J. Yang, M. Mayer, Amyloid-_- Induced Ion Flux in Artificial Lipid Bilayers and Neuronal Cells: Resolving a Controversy, Neurotox. Res. 16 (2009) 1-13. doi: 10.1007/s12640-009-9033-1.10.1007/s12640-009-9033-1Search in Google Scholar

[27] L. Huang, S.S. Manickam, J.R. McCutcheon, Increasing strength of electrospun nanofiber membranes for water filtration using solvent vapor, J. Membr. Sci. 436 (2013) 213-220. doi: 10.1016/j.memsci.2012. in Google Scholar

[28] S. Kaur, R. Barhate, S. Sundarrajan, T. Matsuura, S. Ramakrishna, Hot pressing of electrospun membrane composite and its influence on separation performance on thin film composite nanofiltration membrane, Desalination. 279 (2011) 201-209. doi: 10.1016/j.desal.2011. in Google Scholar

Received: 2018-05-31
Accepted: 2018-06-30
Published Online: 2018-09-25
Published in Print: 2018-09-01

© by Anthony R. D’Amato et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 28.1.2023 from
Scroll Up Arrow