Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 9, 2016

Some Applications of Fractional Velocities

  • Dimiter Prodanov EMAIL logo

Abstract

Fractional velocity is defined as the limit of the difference quotient of the increments of a function and its argument raised to a fractional power. The fractional velocity can be suitable for characterizing singular behavior of derivatives of Hölderian functions and non differentiable functions. Relations to integer-order derivatives and other integral-based definitions are discussed.It is demonstrated that for Hölder functions under certain conditions the product rules deviates from the Leibniz rule. This deviation is expressed by another quantity, fractional co-variation.

Acknowledgments

The work has been supported in part by a grant from Research Fund-Flanders (FWO), contract number 0880.212.840.

Reference

[1] L.F. Abbott, M.B. Wise, Dimension of a quantum-mechanical path. Amer. J. Phys. 49 (1981), 37-3910.1119/1.12657Search in Google Scholar

[2] F.B. Adda, J. Cresson, About non-differentiable functions. J. Math. Anal. Appl. 263 (2001), 721-737.10.1006/jmaa.2001.7656Search in Google Scholar

[3] F.B. Adda, J. Cresson, Quantum derivatives and the Schrödinger equation. Chaos Solitons & Fractals 19 (2004), 1323-133410.1016/S0960-0779(03)00339-4Search in Google Scholar

[4] F.B. Adda, J. Cresson, Fractional differential equations and the Schrödinger equation. Appl. Math. Comp. 161 (2005), 324-34510.1016/j.amc.2003.12.031Search in Google Scholar

[5] F.B. Adda, J. Cresson, Corrigendum to” About non-differentiable functions” [J. Math. Anal. Appl. 263 (2001) 721−737]. J. Math. Anal. Appl. 408, No. 1 (2013), 409-413, doi:10.1016/j.jmaa.2013.06.02710.1016/j.jmaa.2013.06.027Search in Google Scholar

[6] S. Amir-Azizi, A.J.G. Hey, T.R. Morris, Quantum fractals. Complex Systems 1 (1987), 923-938Search in Google Scholar

[7] A. Babakhani, V. Daftardar-Gejji, On calculus of local fractional derivatives. J. Math. Anal. Appl. 270, No. 1 (2002), 66-7910.1016/S0022-247X(02)00048-3Search in Google Scholar

[8] P. du Bois-Reymond, Versuch einer classification der will krlichen functionen reeller argumente nach ihren aenderungen in den kleinsten intervallen. J. Reine Ang. Math. 79 (1875), 21-37.Search in Google Scholar

[9] y. Chen, Y. Yan, K. Zhang, On the local fractional derivative. J. Math. Anal. Appl. 362, No 1 (2010), 17−33; doi:10.1016/j.jmaa.2009.08.01410.1016/j.jmaa.2009.08.014Search in Google Scholar

[10] G. Cherbit, Fractals, Non-integral Dimensions and Applications. John Wiley & Sons, Paris [Chap. Local dimension, momentum and trajectories] (1991),231-238Search in Google Scholar

[11] G. Faber, Uber stetige funktionen. Math. Ann. 66 (1909), 81-9410.1007/BF01450912Search in Google Scholar

[12] K. Kolwankar, A. Gangal, Hölder exponents of irregular signals and local fractional derivatives. Pramana J. Phys. 1, No 1 (1997), 49-6810.1007/BF02845622Search in Google Scholar

[13] K. Kolwankar, J. Vehel, Measuring functions smoothness with local fractional derivatives. Frac. Calc. Appl. Anal. 4, No 3 (2001), 285-301Search in Google Scholar

[14] S. Mallat, W.-L. Hwang, Singularity detection and processing with wavelets. IEEE Transactionson Information Theory 38, No 2 (1992), 617−643; doi:10.1109/18.11972710.1109/18.119727Search in Google Scholar

[15] L. Nottale, Fractals in the quantum theory of space time. Int. J. Modern Physics A 4 (1989), 5047−5117; doi:10.1007/978-0-387-30440-3_-22810.1142/S0217751X89002156Search in Google Scholar

[16] L. Nottale, Scale relativity and Schrödinger’s equation. Chaos Solitons & Fractals 9 (1998), 1051−1061; doi:10.1016/S0960-0779(97)00190-210.1016/S0960-0779(97)00190-2Search in Google Scholar

[17] L. Nottale, Fractals in the quantum theory of spacetime. In: Mathematics of Complexity and Dynamical Systems, Ed. R. A. Meyers, Springer, New York (2011), 571−590; doi:10.1007/978-1-4614-1806-1_-37Search in Google Scholar

[18] D. Prodanov, Fractional variation of Hölderian functions. Fract. Calc. Appl. Anal. 18, No 3 (2015), 580−602; DOI: 10.1515/fca-20l5-0036; http: //www. degruyter. com/view/j/fca.2015.18. issue-3/ issue-files/fca.2015.18. issue-3.xml 10.1515/fca-2015-0036Search in Google Scholar

[19] D. Prodanov, Regularized and fractional taylor expansions of Holderian functions. Preprint, ArXiv, 1508.06086 (2015Search in Google Scholar

[20] D. Sornette, Brownian representation of fractal quantum paths. European Journal of Physics 11, No 6 (1990), 33410.1088/0143-0807/11/6/004Search in Google Scholar

[21] V. Tarasov, No violation of the Leibniz rule. No fractional derivative. Comm. Nonlin. Sci. Num. Simul. 18, No 11 (2013), 2945−2948; doi:10.1016/j.cnsns.2013.04.001.10.1016/j.cnsns.2013.04.001Search in Google Scholar

[22] W. Trench, Integral Calculus of Functions of One Variable. Trinity University, Chap. 3 (2013), 171-177.Search in Google Scholar

Received: 2015-2-11
Revised: 2015-12-1
Published Online: 2016-3-9
Published in Print: 2016-2-1

© 2016 Diogenes Co., Sofia

Downloaded on 9.12.2023 from https://www.degruyter.com/document/doi/10.1515/fca-2016-0010/html
Scroll to top button