Abstract
A skew generalized power series ring
Funding source: Politechnika Bialostocka
Award Identifier / Grant number: WZ/WI/1/2019
Funding statement: This research was supported by the Bialystok University of Technology Grant WZ/WI/1/2019 funded from the resources for research by the Ministry of Science and Higher Education of Poland.
References
[1] D. D. Anderson, D. F. Anderson and M. Zafrullah, Completely integrally closed Prüfer v-multiplication domains, Comm. Algebra 45 (2017), no. 12, 5264–5282. 10.1080/00927872.2017.1303502Search in Google Scholar
[2] D. D. Anderson, B. G. Kang and M. H. Park, Anti-Archimedean rings and power series rings, Comm. Algebra 26 (1998), no. 10, 3223–3238. 10.1080/00927879808826338Search in Google Scholar
[3] R. A. Beauregard and D. E. Dobbs, On a class of Archimedean integral domains, Canadian J. Math. 28 (1976), no. 2, 365–375. 10.4153/CJM-1976-038-xSearch in Google Scholar
[4] C. Bessenrodt, H.-H. Brungs and G. Törner, Prime ideals in right chain rings, Mitt. Math. Sem. Giessen (1984), no. 163, 141–167. Search in Google Scholar
[5] R. Blute, R. Cockett, P.-A. Jacqmin and P. Scott, Finiteness spaces and generalized power series, Proceedings of the Thirty-Fourth Conference on the Mathematical Foundations of Programming Semantics, Electron. Notes Theor. Comput. Sci. 341, Elsevier Science, Amsterdam (2018), 5–22. 10.1016/j.entcs.2018.11.002Search in Google Scholar
[6] F. Couchot, Valuation domains with a maximal immediate extension of finite rank, J. Algebra 323 (2010), no. 1, 32–41. 10.1016/j.jalgebra.2009.08.023Search in Google Scholar
[7] J. Coykendall and T. Dumitrescu, An infinite product of formal power series, Bull. Math. Soc. Sci. Math. Roumanie (N. S.) 49(97) (2006), no. 1, 31–36. Search in Google Scholar
[8] D. E. Dobbs, Prime ideals surviving in complete integral closures, Arch. Math. (Basel) 69 (1997), no. 6, 465–469. 10.1007/s000130050147Search in Google Scholar
[9]
T. Dumitrescu, S. O. I. Al-Salihi, N. Radu and T. Shah,
Some factorization properties of composite domains
[10] G. A. Elliott and P. Ribenboim, Fields of generalized power series, Arch. Math. (Basel) 54 (1990), no. 4, 365–371. 10.1007/BF01189583Search in Google Scholar
[11] M. Ferrero, R. Mazurek and A. Sant’Ana, On right chain semigroups, J. Algebra 292 (2005), no. 2, 574–584. 10.1016/j.jalgebra.2005.07.019Search in Google Scholar
[12] S. Gabelli and M. Roitman, On finitely stable domains, I, J. Commut. Algebra 11 (2019), no. 1, 49–67. 10.1216/JCA-2019-11-1-49Search in Google Scholar
[13] S. Gabelli and M. Roitman, On finitely stable domains, II, J. Commut. Algebra, to appear. 10.1216/jca.2020.12.179Search in Google Scholar
[14]
R. Gilmer,
A note on the quotient field of the domain
[15] S. Hizem, Power series over an ascending chain of rings, Comm. Algebra 40 (2012), no. 11, 4263–4275. 10.1080/00927872.2011.607874Search in Google Scholar
[16] V. M. Kopytov and N. Y. Medvedev, The Theory of Lattice-ordered Groups, Math. Appl. 307, Kluwer Academic, Dordrecht, 1994. 10.1007/978-94-015-8304-6Search in Google Scholar
[17] T. Y. Lam, A First Course in Noncommutative Rings, Grad. Texts in Math. 131, Springer, New York, 1991. 10.1007/978-1-4684-0406-7Search in Google Scholar
[18] Z. K. Liu, Triangular matrix representations of rings of generalized power series, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 4, 989–998. 10.1007/s10114-005-0555-zSearch in Google Scholar
[19] A. Majidinya and A. Moussavi, On APP skew generalized power series rings, Studia Sci. Math. Hungar. 50 (2013), no. 4, 436–453. 10.1556/sscmath.50.2013.4.1253Search in Google Scholar
[20] R. Manaviyat and M. Habibi, Nil–Armendariz condition on skew generalized power series rings, Iran. J. Sci. Technol. Trans. A Sci. 41 (2017), no. 2, 419–428. 10.1007/s40995-017-0261-6Search in Google Scholar
[21] G. Marks, R. Mazurek and M. Ziembowski, A new class of unique product monoids with applications to ring theory, Semigroup Forum 78 (2009), no. 2, 210–225. 10.1007/s00233-008-9063-7Search in Google Scholar
[22] G. Marks, R. Mazurek and M. Ziembowski, A unified approach to various generalizations of Armendariz rings, Bull. Aust. Math. Soc. 81 (2010), no. 3, 361–397. 10.1017/S0004972709001178Search in Google Scholar
[23] R. Mazurek, Left principally quasi-Baer and left APP-rings of skew generalized power series, J. Algebra Appl. 14 (2015), no. 3, Article ID 1550038. 10.1142/S0219498815500383Search in Google Scholar
[24] R. Mazurek and M. Ziembowski, Uniserial rings of skew generalized power series, J. Algebra 318 (2007), no. 2, 737–764. 10.1016/j.jalgebra.2007.08.024Search in Google Scholar
[25] R. Mazurek and M. Ziembowski, On von Neumann regular rings of skew generalized power series, Comm. Algebra 36 (2008), no. 5, 1855–1868. 10.1080/00927870801941150Search in Google Scholar
[26] R. Mazurek and M. Ziembowski, The ascending chain condition for principal left or right ideals of skew generalized power series rings, J. Algebra 322 (2009), no. 4, 983–994. 10.1016/j.jalgebra.2009.03.040Search in Google Scholar
[27] R. Mazurek and M. Ziembowski, Right Gaussian rings and skew power series rings, J. Algebra 330 (2011), 130–146. 10.1016/j.jalgebra.2010.11.014Search in Google Scholar
[28] R. Mazurek and M. Ziembowski, On semilocal, Bézout and distributive generalized power series rings, Internat. J. Algebra Comput. 25 (2015), no. 5, 725–744. 10.1142/S0218196715500174Search in Google Scholar
[29] A. Moussavi, F. Padashnik and K. Paykan, Archimedean skew generalized power series rings, Commun. Korean Math. Soc. 34 (2019), no. 2, 361–374. Search in Google Scholar
[30] A. R. Nasr-Isfahani, The ascending chain condition for principal left ideals of skew polynomial rings, Taiwanese J. Math. 18 (2014), no. 3, 931–941. 10.11650/tjm.18.2014.1663Search in Google Scholar
[31] P. Ribenboim, Noetherian rings of generalized power series, J. Pure Appl. Algebra 79 (1992), no. 3, 293–312. 10.1016/0022-4049(92)90056-LSearch in Google Scholar
[32] P. Ribenboim, Special properties of generalized power series, J. Algebra 173 (1995), no. 3, 566–586. 10.1006/jabr.1995.1103Search in Google Scholar
[33] P. Ribenboim, Semisimple rings and von Neumann regular rings of generalized power series, J. Algebra 198 (1997), no. 2, 327–338. 10.1006/jabr.1997.7063Search in Google Scholar
[34]
P. B. Sheldon,
How changing
[35] M. Zahiri, R. Mohammadi, A. Alhevaz and E. Hashemi, Skew generalized power series rings and the McCoy property, Taiwanese J. Math. 23 (2019), no. 1, 63–85. 10.11650/tjm/180805Search in Google Scholar
[36] R. Zhao, Left APP-rings of skew generalized power series, J. Algebra Appl. 10 (2011), no. 5, 891–900. 10.1142/S0219498811005014Search in Google Scholar
[37] L. Zhongkui, The ascending chain condition for principal ideals of rings of generalized power series, Comm. Algebra 32 (2004), no. 9, 3305–3314. 10.1081/AGB-120039398Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston