Abstract
In this paper, our purpose is to give a characterization of the generic special cubic fourfold which contains a smooth rational surface of degree 9 not homologous to a complete intersection. As corollaries, we will give an explicit construction of families of smooth surfaces in generic special cubic fourfolds
Funding source: National Foundation for Science and Technology Development
Award Identifier / Grant number: 101.04-2019.309
Funding source: Vietnam Academy of Science and Technology
Award Identifier / Grant number: ICRTM02-2020.05
Funding statement: The first author was partially supported by the Alexander von Humboldt Foundation and the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.04-2019.309. The second author was partially supported by Grant number ICRTM02-2020.05, awarded in the internal grant competition of International Center for Research and Postgraduate Training in Mathematics, Hanoi.
References
[1] J. Ahn and S. Kwak, Graded mapping cone theorem, multisecants and syzygies, J. Algebra 331 (2011), 243–262. 10.1016/j.jalgebra.2010.07.030Search in Google Scholar
[2]
J. Ahn and S. Kwak,
On syzygies, degree, and geometric properties of projective schemes with property
[3] A. Alzati and F. Russo, On the k-normality of projected algebraic varieties, Bull. Braz. Math. Soc. (N. S.) 33 (2002), no. 1, 27–48. 10.1007/s005740200001Search in Google Scholar
[4] E. Arrondo and C. G. Madonna, Curves and vector bundles on quartic threefolds, J. Korean Math. Soc. 46 (2009), no. 3, 589–607. 10.4134/JKMS.2009.46.3.589Search in Google Scholar
[5] R. Beheshti and D. Eisenbud, Fibers of generic projections, Compos. Math. 146 (2010), no. 2, 435–456. 10.1112/S0010437X09004503Search in Google Scholar
[6] A. Bertram, L. Ein and R. Lazarsfeld, Vanishing theorems, a theorem of Severi, and the equations defining projective varieties, J. Amer. Math. Soc. 4 (1991), no. 3, 587–602. 10.1090/S0894-0347-1991-1092845-5Search in Google Scholar
[7] M. Bolognesi, F. Russo and G. Staglianò, Some loci of rational cubic fourfolds, Math. Ann. 373 (2019), no. 1–2, 165–190. 10.1007/s00208-018-1707-7Search in Google Scholar
[8] J. P. Brennan, J. Herzog and B. Ulrich, Maximally generated Cohen–Macaulay modules, Math. Scand. 61 (1987), no. 2, 181–203. 10.7146/math.scand.a-12198Search in Google Scholar
[9] M. Casanellas and R. Hartshorne, Gorenstein biliaison and ACM sheaves, J. Algebra 278 (2004), no. 1, 314–341. 10.1016/j.jalgebra.2003.11.013Search in Google Scholar
[10] M. Casanellas, R. Hartshorne, F. Geiss and F.-O. Schreyer, Stable Ulrich bundles, Internat. J. Math. 23 (2012), no. 8, Article ID 1250083. 10.1142/S0129167X12500838Search in Google Scholar
[11] G. Castelnuovo, Sui multipli di une serie lineare di gruppi di punti appartenente ad une curva algebraic, Rend. Circ. Mat. Palermo 7 (1893), no. 2, 89–110. 10.1007/BF03012436Search in Google Scholar
[12]
W. Decker and F.-O. Schreyer,
Non-general type surfaces in
[13] L. Ein and R. Lazarsfeld, Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension, Invent. Math. 111 (1993), no. 1, 51–67. 10.1007/BF01231279Search in Google Scholar
[14] D. Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35–64. 10.1090/S0002-9947-1980-0570778-7Search in Google Scholar
[15] D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), no. 1, 89–133. 10.1016/0021-8693(84)90092-9Search in Google Scholar
[16] D. Eisenbud, M. Green, K. Hulek and S. Popescu, Restricting linear syzygies: Algebra and geometry, Compos. Math. 141 (2005), no. 6, 1460–1478. 10.1112/S0010437X05001776Search in Google Scholar
[17] D. Eisenbud, M. Green, K. Hulek and S. Popescu, Small schemes and varieties of minimal degree, Amer. J. Math. 128 (2006), no. 6, 1363–1389. 10.1353/ajm.2006.0043Search in Google Scholar
[18] D. Eisenbud and J. Harris, On varieties of minimal degree (a centennial account), Algebraic Geometry, Bowdoin 1985 (Brunswick 1985), Proc. Sympos. Pure Math. 46, American Mathematical Society, Providence (1987), 3–13. 10.1090/pspum/046.1/927946Search in Google Scholar
[19] H. Flenner, Die Sätze von Bertini für lokale Ringe, Math. Ann. 229 (1977), no. 2, 97–111. 10.1007/BF01351596Search in Google Scholar
[20] W. Fulton, Intersection Theory, 2nd ed., Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1998. 10.1007/978-1-4612-1700-8Search in Google Scholar
[21] M. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984), no. 1, 125–171. 10.4310/jdg/1214438426Search in Google Scholar
[22] D. Grayson and M. Stillman, Macaulay2-a software system for algebraic geometry and commutative algebra, 1999. Search in Google Scholar
[23] M. Green and R. Lazarsfeld, On the projective normality of complete linear series on an algebraic curve, Invent. Math. 83 (1986), no. 1, 73–90. 10.1007/BF01388754Search in Google Scholar
[24] M. Green and R. Lazarsfeld, Some results on the syzygies of finite sets and algebraic curves, Compos. Math. 67 (1988), no. 3, 301–314. Search in Google Scholar
[25] R. Hartshorne, Generalized divisors on Gorenstein schemes, K-theory 8 (1994), 287–339. 10.1007/BF00960866Search in Google Scholar
[26] R. Hartshorne, On Rao’s theorems and the Lazarsfeld–Rao property, Ann. Fac. Sci. Toulouse Math. (6) 12 (2003), no. 3, 375–393. 10.5802/afst.1053Search in Google Scholar
[27] B. Hassett, Special cubic fourfolds, Compos. Math. 120 (2000), no. 1, 1–23. 10.1023/A:1001706324425Search in Google Scholar
[28] S. Kwak, Castelnuovo regularity for smooth subvarieties of dimensions 3 and 4, J. Algebraic Geom. 7 (1998), no. 1, 195–206. Search in Google Scholar
[29]
S. Kwak and E. Park,
Some effects of property
[30] R. Lazarsfeld, A sharp Castelnuovo bound for smooth surfaces, Duke Math. J. 55 (1987), no. 2, 423–429. 10.1215/S0012-7094-87-05523-2Search in Google Scholar
[31] E. L. Livorni, On the existence of some surfaces, Algebraic Geometry (L’Aquila 1988), Lecture Notes in Math. 1417, Springer, Berlin (1990), 155–179. 10.1007/BFb0083340Search in Google Scholar
[32]
M. Mancini,
Projectively Cohen–Macauly surfaces of small degree in
[33] D. Mumford, Lectures on Curves on an Algebraic Surface, Ann. of Math. Stud. 59, Princeton University, Princeton, 1966. 10.1515/9781400882069Search in Google Scholar
[34] H. Nuer, Unirationality of moduli spaces of special cubic fourfolds and K3 surfaces, Algebr. Geom. 4 (2017), no. 3, 281–289. 10.1007/978-3-319-46209-7_5Search in Google Scholar
[35] C. Peskine and L. Szpiro, Liaison des variétés algébriques. I, Invent. Math. 26 (1974), 271–302. 10.1007/BF01425554Search in Google Scholar
[36] F. Russo and G. Staglianò, Congruences of 5-secant conics and the rationality of some admissible cubic fourfolds, Duke Math. J. 168 (2019), no. 5, 849–865. 10.1215/00127094-2018-0053Search in Google Scholar
[37] F.-O. Schreyer, Matrix factorizations and families of curves of genus 15, Algebr. Geom. 2 (2015), no. 4, 489–507. 10.14231/AG-2015-021Search in Google Scholar
[38] J. Shamash, The Poincaré series of a local ring, J. Algebra 12 (1969), 453–470. 10.1016/0021-8693(69)90023-4Search in Google Scholar
[39] A. J. Sommese, Hyperplane sections of projective surfaces. I. The adjunction mapping, Duke Math. J. 46 (1979), no. 2, 377–401. 10.1215/S0012-7094-79-04616-7Search in Google Scholar
[40] A. J. Sommese and A. Van de Ven, On the adjunction mapping, Math. Ann. 278 (1987), no. 1–4, 593–603. 10.1007/BF01458083Search in Google Scholar
[41] H. L. Truong, On the special cubic fourfolds and matrix factorizations, preprint (2020). Search in Google Scholar
[42] H. L. Truong and H. N. Yen, Stable Ulrich bundles on cubic fourfolds, preprint (2020). Search in Google Scholar
[43] H. L. Truong and H. N. Yen, Áncillary macaulay2 file, 2020, https://www.dropbox.com/s/7sjufvkcg3nigrh/ThreeRegularSurfaces.m2?dl=0. Search in Google Scholar
[44] A. Van de Ven, On the 2-connectedness of very ample divisors on a surface, Duke Math. J. 46 (1979), no. 2, 403–407. 10.1215/S0012-7094-79-04617-9Search in Google Scholar
[45] C. Voisin, Some aspects of the Hodge conjecture, Jpn. J. Math. 2 (2007), no. 2, 261–296. 10.1007/s11537-007-0639-xSearch in Google Scholar
[46]
C. Voisin,
On the universal
[47] Y. Yoshino, Cohen–Macaulay Modules Over Cohen–Macaulay Rings, London Math. Soc. Lecture Note Ser. 146, Cambridge University, Cambridge, 1990. 10.1017/CBO9780511600685Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston