Abstract
We study foliations
Funding source: Ministerio de Ciencia e Innovación
Award Identifier / Grant number: PGC2018-096446-B-C22
Award Identifier / Grant number: RED2018-102583-T
Funding source: Generalitat Valenciana
Award Identifier / Grant number: AICO-2019-223
Funding source: Universitat Jaume I
Award Identifier / Grant number: UJI-2018-10
Funding source: Consejo Nacional de Ciencia y Tecnología
Award Identifier / Grant number: CVU 10069
Funding statement: The first two authors are partially supported by the Spanish Government MICINN/FEDER/AEI/UE, grants PGC2018-096446-B-C22 and RED2018-102583-T, as well as by Generalitat Valenciana, grant AICO-2019-223 and Universitat Jaume I, grant UJI-2018-10. The third author was partially supported by CONACYT: Estancias Sabáticas Vinculadas a la Consolidación de Grupos de Investigación, CVU 10069.
References
[1] C. Araujo and M. Corrêa, Jr., On degeneracy schemes of maps of vector bundles and applications to holomorphic foliations, Math. Z. 276 (2014), no. 1–2, 505–515. 10.1007/s00209-013-1210-5Search in Google Scholar
[2] L. Autonne, Sur la théorie des équations différentielles du premier ordre et du premier degré, J. Éc. Polytech. 61 (1891), 35–122. Search in Google Scholar
[3] L. Autonne, Sur la théorie des équations différentielles du premier ordre et du premier degré. III, J. Éc. Polytech. 62 (1892), 47–180. Search in Google Scholar
[4] M. Brunella, Birational Geometry of Foliations, IMPA Monogr. 1, Springer, Cham, 2015. 10.1007/978-3-319-14310-1Search in Google Scholar
[5]
A. Campillo and M. M. Carnicer,
Proximity inequalities and bounds for the degree of invariant curves by foliations of
[6] A. Campillo and J. Olivares, Polarity with respect to a foliation and Cayley–Bacharach theorems, J. Reine Angew. Math. 534 (2001), 95–118. 10.1515/crll.2001.036Search in Google Scholar
[7] A. Campillo and J. Olivares, On sections with isolated singularities of twisted bundles and applications to foliations by curves, Math. Res. Lett. 10 (2003), no. 5–6, 651–658. 10.4310/MRL.2003.v10.n5.a8Search in Google Scholar
[8] A. Campillo and J. Olivares, Foliations by curves uniquely determined by minimal subschemes of its singularities, J. Singul. 18 (2018), 105–113. 10.5427/jsing.2018.18gSearch in Google Scholar
[9] M. M. Carnicer, The Poincaré problem in the nondicritical case, Ann. of Math. (2) 140 (1994), no. 2, 289–294. 10.2307/2118601Search in Google Scholar
[10] V. Cavalier and D. Lehmann, On the Poincaré inequality for one-dimensional foliations, Compos. Math. 142 (2006), no. 2, 529–540. 10.1112/S0010437X05001764Search in Google Scholar
[11]
D. Cerveau and A. Lins Neto,
Holomorphic foliations in
[12] M. Corrêa, Jr., Darboux–Jouanolou–Ghys integrability for one-dimensional foliations on toric varieties, Bull. Sci. Math. 134 (2010), no. 7, 693–704. 10.1016/j.bulsci.2010.07.001Search in Google Scholar
[13] M. Corrêa, Jr., A. Fernández-Pérez, G. Nonato Costa and R. Vidal Martins, Foliations by curves with curves as singularities, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 4, 1781–1805. 10.5802/aif.2896Search in Google Scholar
[14] G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges), Bull. Sci. Math. 32 (1878), 60–96, 123–144, 151–200. Search in Google Scholar
[15] E. Esteves and S. Kleiman, Bounds on leaves of one-dimensional foliations, Bull. Braz. Math. Soc. 34 (2003), 145–169. 10.1007/s00574-003-0006-3Search in Google Scholar
[16] A. Ferragut, C. Galindo and F. Monserrat, On the computation of Darboux first integrals of a class of planar polynomial vector fields, J. Math. Anal. Appl. 478 (2019), no. 2, 743–763. 10.1016/j.jmaa.2019.05.052Search in Google Scholar
[17] C. Galindo and F. Monserrat, Algebraic integrability of foliations of the plane, J. Differential Equations 231 (2006), no. 2, 611–632. 10.1016/j.jde.2006.05.011Search in Google Scholar
[18] C. Galindo and F. Monserrat, On the characterization of algebraically integrable plane foliations, Trans. Amer. Math. Soc. 362 (2010), no. 9, 4557–4568. 10.1090/S0002-9947-10-04808-7Search in Google Scholar
[19] C. Galindo and F. Monserrat, The Poincaré problem, algebraic integrability and dicritical divisors, J. Differential Equations 256 (2014), no. 11, 3614–3633. 10.1016/j.jde.2014.02.015Search in Google Scholar
[20] A. García Zamora, Foliations in algebraic surfaces having a rational first integral, Publ. Mat. 41 (1997), no. 2, 357–373. 10.5565/PUBLMAT_41297_03Search in Google Scholar
[21] A. García Zamora, Sheaves associated to holomorphic first integrals, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 3, 909–919. 10.5802/aif.1778Search in Google Scholar
[22]
L. Giraldo and A. J. Pan-Collantes,
On the singular scheme of codimension one holomorphic foliations in
[23] X. Gómez-Mont, Holomorphic foliations in ruled surfaces, Trans. Amer. Math. Soc. 312 (1989), no. 1, 179–201. 10.1090/S0002-9947-1989-0983870-8Search in Google Scholar
[24] X. Gómez-Mont and G. Kempf, Stability of meromorphic vector fields in projective spaces, Comment. Math. Helv. 64 (1989), no. 3, 462–473. 10.1007/BF02564687Search in Google Scholar
[25] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977. 10.1007/978-1-4757-3849-0Search in Google Scholar
[26] J. P. Jouanolou, Hypersurfaces solutions d’une équation de Pfaff analytique, Math. Ann. 232 (1978), no. 3, 239–245. 10.1007/BF01351428Search in Google Scholar
[27] S. L. Kleiman, Toward a numerical theory of ampleness, Ann. of Math. (2) 84 (1966), 293–344. 10.2307/1970447Search in Google Scholar
[28] A. Laface, On linear systems of curves on rational scrolls, Geom. Dedicata 90 (2002), 127–144. 10.1023/A:1014958409472Search in Google Scholar
[29] A. Lins Neto, Some examples for the Poincaré and Painlevé problems, Ann. Sci. Éc. Norm. Supér. (4) 35 (2002), no. 2, 231–266. 10.1016/S0012-9593(02)01089-3Search in Google Scholar
[30] F. Loray and J. V. Pereira, Transversely projective foliations on surfaces: Existence of minimal form and prescription of monodromy, Internat. J. Math. 18 (2007), no. 6, 723–747. 10.1142/S0129167X07004278Search in Google Scholar
[31] P. Painlevé, Oeuvres de Paul Painlevé. Tome II, Éditions du Centre National de la Recherche Scientifique, Paris, 1974. Search in Google Scholar
[32] J. V. Pereira, On the Poincaré problem for foliations of general type, Math. Ann. 323 (2002), no. 2, 217–226. 10.1007/s002080100277Search in Google Scholar
[33] H. Poincaré, Mémoire sur les courbes définies par une équation différentielle (I), J. Math. Pure. Appl. 7 (1881), 375–422. Search in Google Scholar
[34] H. Poincaré, Mémoire sur les courbes définies par une équation différentielle (II), J. Math. Pure. Appl. 8 (1882), 251–296. Search in Google Scholar
[35] H. Poincaré, Mémoire sur les courbes définies par une équation différentielle (III), J. Math. Pure. Appl. 1 (1885), 167–244. Search in Google Scholar
[36] H. Poincaré, Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré (I), Rend. Circ. Mat. Palermo 5 (1891), 161–191. 10.1007/BF03015693Search in Google Scholar
[37] H. Poincaré, Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré (II), Rend. Circ. Mat. Palermo 11 (1897), 193–239. 10.1007/BF03015916Search in Google Scholar
[38] M. G. Soares, The Poincaré problem for hypersurfaces invariant by one-dimensional foliations, Invent. Math. 128 (1997), no. 3, 495–500. 10.1007/s002220050150Search in Google Scholar
[39] M. G. Soares, Projective varieties invariant by one-dimensional foliations, Ann. of Math. (2) 152 (2000), no. 2, 369–382. 10.2307/2661388Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston