Accessible Requires Authentication Published by De Gruyter October 18, 2019

Low-Cost Transmitarray Antenna Designs in V-Band based on Unit-Cells with 1 Bit Phase Resolution

Martin Frank ORCID logo, Benedict Scheiner, Fabian Lurz, Robert Weigel and Alexander Koelpin
From the journal Frequenz

Abstract

This paper presents the design and characterization of linearly polarized low-cost transmitarray antennas with ± 70° azimuth beamforming range in V-band in order to add beam steering functionality to existing radar front ends. The transmitarray antennas are composed of 13 × 13 planar unit-cells. The unit-cells consist of two layers of RO4350B laminate and provide a one bit phase resolution. The desired unit-cell behavior has been validated by simulations and measurements. Eight transmitarrays with different phase distributions have been designed and fabricated to realize different beam steering angles in azimuth. The experimental characterization of the radiation patterns shows the desired performance in the frequency range from 59 GHz to 63 GHz. Additionally, steering angle combinations in azimuth and elevation up to 40° have been realized and successfully demonstrate by measuring the 2D radiation pattern.

Funding statement: Funding: This work was supported by Bundesministerium für Bildung und Forschung (Funder Id: http://dx.doi.org/10.13039/501100002347, Grant Number: 16ES0183).

Acknowledgements

This work was carried out in the project NetGuard6P. NetGuard6P (reference number: 16ES0183) is funded by the German ministry of education and research (BMBF) within the research programme InPro3D.

References

[1] S. V. Hum and J. Perruisseau-Carrier, “Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review,” IEEE Trans. Antennas Propag., vol. 62, no. 1, pp. 183–198, Jan. 2014.10.1109/TAP.2013.2287296 Search in Google Scholar

[2] J. Y. Lau and S. V. Hum, “A wideband reconfigurable transmitarray element,” IEEE Trans. Antennas Propag., vol. 60, no. 3, pp. 1303–1311, Mar. 2012.10.1109/TAP.2011.2180475 Search in Google Scholar

[3] P. Padilla, A. Munoz-Acevedo, M. Sierra-Castaner, and M. Sierra-Perez, “Electronically reconfigurable transmitarray at Ku band for microwave applications,” IEEE Trans. Antennas Propag., vol. 58, no. 8, pp. 2571–2579, Aug. 2010.10.1109/TAP.2010.2050426 Search in Google Scholar

[4] M. Frank, F. Lurz, R. Weigel, and A. Koelpin, “Electronically reconfigurable 6 × 6 element transmitarray at K-band based on unit cells with continuous phase range,” IEEE Antennas Wireless Propag. Lett., vol. 18, no. 4, pp. 796–800, Apr. 2019.10.1109/LAWP.2019.2903338 Search in Google Scholar

[5] L. D. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Circularly-polarized reconfigurable transmitarray in Ka-band with beam scanning and polarization switching capabilities,” IEEE Trans. Antennas Propag., vol. 65, no. 2, pp. 529–540, Feb. 2017.10.1109/TAP.2016.2633067 Search in Google Scholar

[6] C. Huang, W. Pan, X. Ma, and X. Luo, “1-bit reconfigurable circularly polarized transmitarray in X-band,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 448–451, 2016.10.1109/LAWP.2015.2451697 Search in Google Scholar

[7] K. T. Pham, R. Sauleau, E. Fourn, F. Diaby, A. Clemente, and L. Dussopt, “Dual-band transmitarrays with dual-linear polarization at Ka-band,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 7009–7018, Dec. 2017.10.1109/TAP.2017.2762011 Search in Google Scholar

[8] A. Aziz, F. Yang, S. Xu, and M. Li, “An efficient dual-band orthogonally polarized transmitarray design using three-dipole elements,” IEEE Antennas Wireless Propag. Lett., vol. 17, no. 2, pp. 319–322, Feb. 2018.10.1109/LAWP.2017.2788412 Search in Google Scholar

[9] C. Tian, Y. Jiao, G. Zhao, and H. Wang, “A wideband transmitarray using triple-layer elements combined with cross slots and double square rings,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1561–1564, 2017.10.1109/LAWP.2017.2651027 Search in Google Scholar

[10] E. G. Plaza, G. León, S. Loredo, A. Arboleya, F. Las-Heras, C. M. S. Álvarez, and M. Rodriguez-Pino, “An ultrathin 2-bit near-field transmitarray lens,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1784–1787, 2017. Search in Google Scholar

[11] M. Frank, F. Lurz, R. Weigel, and A. Koelpin, “Low-cost transmitarray antenna designs with ± 70° beam steering range in V-band,” in 2019 12th German Microwave Conference (GeMiC), Mar. 2019, pp. 123–126. Search in Google Scholar

[12] L. D. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Circularly polarized transmitarray with sequential rotation in Ka-band,” IEEE Trans. Antennas Propag., vol. 63, no. 11, pp. 5118–5124, Nov. 2015.10.1109/TAP.2015.2474149 Search in Google Scholar

[13] H. Kaouach, L. Dussopt, J. Lanteri, T. Koleck, and R. Sauleau, “Wideband low-loss linear and circular polarization transmit-arrays in V-band,” IEEE Trans. Antennas Propag., vol. 59, no. 7, pp. 2513–2523, Jul. 2011.10.1109/TAP.2011.2152331 Search in Google Scholar

[14] C. Jouanlanne, A. Clemente, M. Huchard, J. Keignart, C. Barbier, T. L. Nadan, and L. Petit, “Wideband linearly polarized transmitarray antenna for 60 GHz backhauling,” IEEE Trans. Antennas Propag., vol. 65, no. 3, pp. 1440–1445, Mar. 2017.10.1109/TAP.2017.2655018 Search in Google Scholar

[15] F. Diaby, A. Clemente, K. T. Pham, R. Sauleau, and L. Dussopt, “Circularly polarized transmitarray antennas at Ka-band,” IEEE Antennas Wireless Propag. Lett., vol. 17, no. 7, pp. 1204–1208, Jul. 2018.10.1109/LAWP.2018.2839021 Search in Google Scholar

[16] Rogers Corporation, “RO4000 series high frequency circuit materials,” Datasheet, www.rogerscorp.com. Search in Google Scholar

[17] H. J. Ng, M. Kucharski, W. Ahmad, and D. Kissinger, “Multi-purpose fully differential 61- and 122-GHz radar transceivers for scalable MIMO sensor platforms,” IEEE J. Solid-State Circuits, vol. 52, no. 9, pp. 2242–2255, Sept. 2017.10.1109/JSSC.2017.2704602 Search in Google Scholar

[18] M. Frank, T. Reissland, F. Lurz, M. Voelkel, F. Lambrecht, S. Kiefl, P. Ghesquiere, H. J. Ng, D. Kissinger, R. Weigel, and A. Koelpin, “Antenna and package design for 61- and 122-GHz radar sensors in embedded wafer-level ball grid array technology,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 12, pp. 5156–5168, 2018.10.1109/TMTT.2018.2873368 Search in Google Scholar

Received: 2019-08-27
Published Online: 2019-10-18
Published in Print: 2019-11-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston