Accessible Requires Authentication Published by De Gruyter October 22, 2019

Photonic Components for Signal Generation and Distribution for Large Aperture Radar in Autonomous Driving

Stefan Preussler, Fabian Schwartau, Joerg Schoebel and Thomas Schneider
From the journal Frequenz

Abstract

Fully autonomous driving, even under bad weather conditions, requires use of multiple sensor systems including radar imaging. Microwave photonics, especially the optical generation and distribution of radar signals, can overcome many of the electronic disadvantages. This article will give an overview about several photonic components and how they could be incorporated into a photonic synchronized radar system, where all the complexity is shifted to a central station. A first proof-of-concept radar experiment with of the shelf telecommunication equipment shows an angular resolution of 1.1°. Furthermore an overview about possible photonic electronic integration is given, leading to comprising low complexity transmitter and receiver chips.

References

[1] C. Lee, “Photonic technologies for the automotive industry,” in Energy Consumption and Autonomous Driving. Lecture Notes in Mobility, J. Langheim Eds. Springer, New York, NY, 2016. Search in Google Scholar

[2] J. Steinbaeck, C. Steger, G. Holweg, and N. Druml, “Next generation radar sensors in automotive sensor fusion systems,” 2017 Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn, 2017. Search in Google Scholar

[3] F. de Ponte Müller, “Survey on ranging sensors and cooperative techniques for relative positioning of vehicles,” Sensors, vol. 17, no. 2, pp. 1–27, 2017. Search in Google Scholar

[4] R. H. Rasshofer and K. Gresser, “Automotive radar and lidar systems for next generation driver assistance functions,” Adv. Radio Sci., vol. 3, no. 4, pp. 205–209, 2005.10.5194/ars-3-205-2005 Search in Google Scholar

[5] I. Bilik, O. Bialer, S. Villeval, H. Sharifi, K. Kona, M. Pan, D. Persechini, M. Musni, and K. Geary, “Automotive MIMO radar for urban environments,” in 2016 IEEE Radar Conference (RadarConf), Philadelphia, PA, 2016. Search in Google Scholar

[6] S. Pan, D. Zue, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeron. Astron., vol. 31, pp. 219–240, 2015. Search in Google Scholar

[7] P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state-of-the-art functionality,” IEEE Microw. Mag., vol. 16, no. 8, pp. 74–83, 2015.10.1109/MMM.2015.2441591 Search in Google Scholar

[8] M. Junker, T. Schneider, K. Lauterbach, R. Henker, M. J. Ammann, and A. T. Schwarzbacher, “1 Gbit/s radio over fiber downlink at a 32 GHz carrier,” in 2008 34th European Conference on Optical Communication, Brussels, 2008. Search in Google Scholar

[9] T. Schneider, M. Junker, and K.-U. Lauterbach, “Theoretical and experimental investigation of Brillouin scattering for the generation of millimeter waves,” J. Opt. Soc. Am. B, vol. 23, no. 6, pp. 1012–1019, 2006.10.1364/JOSAB.23.001012 Search in Google Scholar

[10] T. Schneider, M. Junker, and D. Hannover, “Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems,” Electron. Lett., vol. 40, no. 23, pp. 1500–1502, 2004.10.1049/el:20046461 Search in Google Scholar

[11] S. Preussler, N. Wenzel, R.-P. Braun, N. Owschimikow, C. Vogel, A. Deninger, A. Zadok, U. Woggon, and T. Schneider, “Generation of ultra-narrow, stable and tunable millimeter- and terahertz-waves with very low phase noise,” Opt. Express, vol. 21, no. 20, pp. 23950–23962, 2013.10.1364/OE.21.023950 Search in Google Scholar

[12] P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature, vol. 507, no. 7492 pp. 341–345, 2014.10.1038/nature13078 Search in Google Scholar

[13] X. Ye, F. Zhang, Y. Yang, and S. Pan, “Photonics-based radar with balanced I/Q de-chirping for interferencesuppressed high-resolution detection and imaging,” Photon. Res., vol. 7, no. 3, pp. 265–272, 2019.10.1364/PRJ.7.000265 Search in Google Scholar

[14] W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci Rep., vol. 6, no. 1, 19786, 2016.10.1038/srep19786 Search in Google Scholar

[15] F. Zhang, Q. Guo, and S. Pan, “Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing,” Sci. Rep., vol. 7, no. 1, 13848, 2017.10.1038/s41598-017-14306-y Search in Google Scholar

[16] B. Gao, F. Zhang, E. Zhao, D. Zhang, and S. Pan, “High-resolution phased array radar imaging by photonics-based broadband digital beamforming,” Opt. Express, vol. 27, no. 9, pp. 13194–13203, 2019.10.1364/OE.27.013194 Search in Google Scholar

[17] A. Ragheb, M. A. Esmail, H. Seleem, W. T. Sethi, M. A. Ashraf, H. Fathallah, and S. A. Alshebeili, “Photonics-based multi-band/multi-mode radar signal generation,” Photon. Netw. Commun., 2019. https://doi.org/10.1007/s11107-019-00859-7 Search in Google Scholar

[18] W. Chen, D. Zhu, C. Xie, T. Zhou, X. Zhong, and S. Pan, “Photonics-based reconfigurable multi-band linearly frequency-modulated signal generation,” Opt. Express, vol. 26, no. 25, pp. 32491–32499, 2018.10.1364/OE.26.032491 Search in Google Scholar

[19] M. Burla, D. Marpaung, L. Zhuang, M. Rezaul Khan, A. Leinse, W. Beeker, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen “Multiwavelength-integrated optical beamformer based on wavelength division multiplexing for 2-D phased array antennas,” J. Lightw. Technol., vol. 32, no. 20, pp. 3509–3520, 2014.10.1109/JLT.2014.2332426 Search in Google Scholar

[20] S. Iezekiel, “Integrated microwave photonics: A key enabling technology for radio-over-fiber,” Proc. SPIE 10128, 1012803, 2017.10.1117/12.2252814 Search in Google Scholar

[21] S. Preussler, F. Schwartau, J. Schoebel, and T. Schneider, “Photonically, synchronized large aperture radar for autonomous driving,” Opt. Express, vol. 27, no. 2, pp. 1199–1207, 2019.10.1364/OE.27.001199 Search in Google Scholar

[22] S. Preussler, F. Schwartau, J. Schoebel, and T. Schneider, “Optical signal generation and distribution for large aperture radar in autonomous driving,” in 12th German Microwave Conference (GeMiC), Stuttgart, Germany, pp. 154–157, 2019. Search in Google Scholar

[23] T. Nagatsuma, “Generating millimeter and terahertz waves,” IEEE Microw. Mag., vol. 10, no. 4, pp. 64–74, 2009.10.1109/MMM.2009.932283 Search in Google Scholar

[24] H. Al-Taiy, S. Preuß ler, S. Brückner, J. Schoebel, and T. Schneider, “Generation of highly stable millimeter waves with low phase noise and narrow linewidth,” IEEE Photonics Technol. Lett., vol. 27, no. 15, pp. 1613–1616, 2015.10.1109/LPT.2015.2432464 Search in Google Scholar

[25] X. Chen, M. Milosevic, S. Stankovi‘c, S. Reynolds, T. D. Bucio, K. Li, D. J. Thomson, F. Gardes, and G. T. Reed, “The emergence of silicon photonics as a flexible technology platform,” Proc. IEEE, vol. 106, no. 12, pp. 2101–2116, 2018.10.1109/JPROC.2018.2854372 Search in Google Scholar

[26] M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photon., vol. 4, 492, 2010.10.1038/nphoton.2010.172 Search in Google Scholar

[27] M. Smit et al., “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol., vol. 29, no. 8, 083001, 2014. Search in Google Scholar

[28] W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightwave Technol., vol. 33, no. 4, pp. 901–910, 2015.10.1109/JLT.2015.2392784 Search in Google Scholar

[29] M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Topics. Quantum Electron., vol. 19, no. 4, 6100117, 2013.10.1109/JSTQE.2012.2235413 Search in Google Scholar

[30] J. Witzens, “High-speed silicon photonics modulators,” Proc. IEEE, vol. 106, no. 12, pp. 2158–2182, 2018.10.1109/JPROC.2018.2877636 Search in Google Scholar

[31] J. Zhou, Q. Zhang, J. Wang, L. Zhu, and J. Hong, “Model and design of silicon photonic carrier-depletion Mach-Zehnder modulators for 400 Gb/s and beyond PAM and QAM applications,” Proc. SPIE 10923, 1092318, 2019. Search in Google Scholar

[32] L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light-Sci. Appl., vol. 3, e173, 2014.10.1038/lsa.2014.54 Search in Google Scholar

[33] J. Wang and S. Lee, “Ge-photodetectors for Si-based optoelectronic integration,” Sensors, vol. 11, no. 1, pp. 696–718, 2011.10.3390/s110100696 Search in Google Scholar

[34] P. Eng, S. Song, and B. Ping, “State-of-the-art photodetectors for optoelectronic integration at telecommunication wavelength,” Nanophotonics, vol. 4, no. 3, pp. 277–302, 2015. Search in Google Scholar

[35] S. Lischke, D. Knoll, C. Mai, L. Zimmermann, A. Peczek, M. Kroh, A. Trusch, E. Krune, K. Voigt, and A. Mai, “High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode,” Opt. Express, vol. 23, no. 21, pp. 27213–27220, 2015.10.1364/OE.23.027213 Search in Google Scholar

[36] M. J. R. Heck and H. Mohammadhosseini, “Energy-efficient millimeter-wave generation using silicon photonics,” Proc. SPIE 10108, 1010800, 2017. Search in Google Scholar

[37] H. Mohammadhosseini and M. J. R. Heck, “Silicon photonics to improve the energy-efficiency of millimeter wave communication systems,” 2017 International Topical Meeting on Microwave Photonics (MWP), Beijing, 2017. Search in Google Scholar

[38] F. Schwartau, S. Preussler, M. Krueckemeier, F. Pfeiffer, H. Stuelzebach, T. Schneider, and J. Schoebel, “Modular wideband high angular resolution 79 GHz radar system,” in 2019 12th German Microwave Conference (GeMiC), Stuttgart, Germany, pp. 194–197, 2019. Search in Google Scholar

[39] Texas Instruments, “AWR1243 Single-Chip 77- and 79-GHz FMCW Transceiver,” SWRS188A, 2018. Search in Google Scholar

Received: 2019-08-29
Published Online: 2019-10-22
Published in Print: 2019-11-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston