Abstract
Fully autonomous driving, even under bad weather conditions, requires use of multiple sensor systems including radar imaging. Microwave photonics, especially the optical generation and distribution of radar signals, can overcome many of the electronic disadvantages. This article will give an overview about several photonic components and how they could be incorporated into a photonic synchronized radar system, where all the complexity is shifted to a central station. A first proof-of-concept radar experiment with of the shelf telecommunication equipment shows an angular resolution of 1.1°. Furthermore an overview about possible photonic electronic integration is given, leading to comprising low complexity transmitter and receiver chips.
References
[1] C. Lee, “Photonic technologies for the automotive industry,” in Energy Consumption and Autonomous Driving. Lecture Notes in Mobility, J. Langheim Eds. Springer, New York, NY, 2016.10.1007/978-3-319-19818-7_20Search in Google Scholar
[2] J. Steinbaeck, C. Steger, G. Holweg, and N. Druml, “Next generation radar sensors in automotive sensor fusion systems,” 2017 Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn, 2017.10.1109/SDF.2017.8126389Search in Google Scholar
[3] F. de Ponte Müller, “Survey on ranging sensors and cooperative techniques for relative positioning of vehicles,” Sensors, vol. 17, no. 2, pp. 1–27, 2017.10.3390/s17020271Search in Google Scholar PubMed PubMed Central
[4] R. H. Rasshofer and K. Gresser, “Automotive radar and lidar systems for next generation driver assistance functions,” Adv. Radio Sci., vol. 3, no. 4, pp. 205–209, 2005.10.5194/ars-3-205-2005Search in Google Scholar
[5] I. Bilik, O. Bialer, S. Villeval, H. Sharifi, K. Kona, M. Pan, D. Persechini, M. Musni, and K. Geary, “Automotive MIMO radar for urban environments,” in 2016 IEEE Radar Conference (RadarConf), Philadelphia, PA, 2016.10.1109/RADAR.2016.7485215Search in Google Scholar
[6] S. Pan, D. Zue, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeron. Astron., vol. 31, pp. 219–240, 2015.Search in Google Scholar
[7] P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state-of-the-art functionality,” IEEE Microw. Mag., vol. 16, no. 8, pp. 74–83, 2015.10.1109/MMM.2015.2441591Search in Google Scholar
[8] M. Junker, T. Schneider, K. Lauterbach, R. Henker, M. J. Ammann, and A. T. Schwarzbacher, “1 Gbit/s radio over fiber downlink at a 32 GHz carrier,” in 2008 34th European Conference on Optical Communication, Brussels, 2008.10.1109/ECOC.2008.4729230Search in Google Scholar
[9] T. Schneider, M. Junker, and K.-U. Lauterbach, “Theoretical and experimental investigation of Brillouin scattering for the generation of millimeter waves,” J. Opt. Soc. Am. B, vol. 23, no. 6, pp. 1012–1019, 2006.10.1364/JOSAB.23.001012Search in Google Scholar
[10] T. Schneider, M. Junker, and D. Hannover, “Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems,” Electron. Lett., vol. 40, no. 23, pp. 1500–1502, 2004.10.1049/el:20046461Search in Google Scholar
[11] S. Preussler, N. Wenzel, R.-P. Braun, N. Owschimikow, C. Vogel, A. Deninger, A. Zadok, U. Woggon, and T. Schneider, “Generation of ultra-narrow, stable and tunable millimeter- and terahertz-waves with very low phase noise,” Opt. Express, vol. 21, no. 20, pp. 23950–23962, 2013.10.1364/OE.21.023950Search in Google Scholar PubMed
[12] P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature, vol. 507, no. 7492 pp. 341–345, 2014.10.1038/nature13078Search in Google Scholar PubMed
[13] X. Ye, F. Zhang, Y. Yang, and S. Pan, “Photonics-based radar with balanced I/Q de-chirping for interferencesuppressed high-resolution detection and imaging,” Photon. Res., vol. 7, no. 3, pp. 265–272, 2019.10.1364/PRJ.7.000265Search in Google Scholar
[14] W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci Rep., vol. 6, no. 1, 19786, 2016.10.1038/srep19786Search in Google Scholar PubMed PubMed Central
[15] F. Zhang, Q. Guo, and S. Pan, “Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing,” Sci. Rep., vol. 7, no. 1, 13848, 2017.10.1038/s41598-017-14306-ySearch in Google Scholar PubMed PubMed Central
[16] B. Gao, F. Zhang, E. Zhao, D. Zhang, and S. Pan, “High-resolution phased array radar imaging by photonics-based broadband digital beamforming,” Opt. Express, vol. 27, no. 9, pp. 13194–13203, 2019.10.1364/OE.27.013194Search in Google Scholar PubMed
[17] A. Ragheb, M. A. Esmail, H. Seleem, W. T. Sethi, M. A. Ashraf, H. Fathallah, and S. A. Alshebeili, “Photonics-based multi-band/multi-mode radar signal generation,” Photon. Netw. Commun., 2019. https://doi.org/10.1007/s11107-019-00859-7Search in Google Scholar
[18] W. Chen, D. Zhu, C. Xie, T. Zhou, X. Zhong, and S. Pan, “Photonics-based reconfigurable multi-band linearly frequency-modulated signal generation,” Opt. Express, vol. 26, no. 25, pp. 32491–32499, 2018.10.1364/OE.26.032491Search in Google Scholar PubMed
[19] M. Burla, D. Marpaung, L. Zhuang, M. Rezaul Khan, A. Leinse, W. Beeker, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen “Multiwavelength-integrated optical beamformer based on wavelength division multiplexing for 2-D phased array antennas,” J. Lightw. Technol., vol. 32, no. 20, pp. 3509–3520, 2014.10.1109/JLT.2014.2332426Search in Google Scholar
[20] S. Iezekiel, “Integrated microwave photonics: A key enabling technology for radio-over-fiber,” Proc. SPIE 10128, 1012803, 2017.10.1117/12.2252814Search in Google Scholar
[21] S. Preussler, F. Schwartau, J. Schoebel, and T. Schneider, “Photonically, synchronized large aperture radar for autonomous driving,” Opt. Express, vol. 27, no. 2, pp. 1199–1207, 2019.10.1364/OE.27.001199Search in Google Scholar PubMed
[22] S. Preussler, F. Schwartau, J. Schoebel, and T. Schneider, “Optical signal generation and distribution for large aperture radar in autonomous driving,” in 12th German Microwave Conference (GeMiC), Stuttgart, Germany, pp. 154–157, 2019.10.23919/GEMIC.2019.8698119Search in Google Scholar
[23] T. Nagatsuma, “Generating millimeter and terahertz waves,” IEEE Microw. Mag., vol. 10, no. 4, pp. 64–74, 2009.10.1109/MMM.2009.932283Search in Google Scholar
[24] H. Al-Taiy, S. Preuß ler, S. Brückner, J. Schoebel, and T. Schneider, “Generation of highly stable millimeter waves with low phase noise and narrow linewidth,” IEEE Photonics Technol. Lett., vol. 27, no. 15, pp. 1613–1616, 2015.10.1109/LPT.2015.2432464Search in Google Scholar
[25] X. Chen, M. Milosevic, S. Stankovi‘c, S. Reynolds, T. D. Bucio, K. Li, D. J. Thomson, F. Gardes, and G. T. Reed, “The emergence of silicon photonics as a flexible technology platform,” Proc. IEEE, vol. 106, no. 12, pp. 2101–2116, 2018.10.1109/JPROC.2018.2854372Search in Google Scholar
[26] M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photon., vol. 4, 492, 2010.10.1038/nphoton.2010.172Search in Google Scholar
[27] M. Smit et al., “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol., vol. 29, no. 8, 083001, 2014.10.1088/0268-1242/29/8/083001Search in Google Scholar
[28] W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightwave Technol., vol. 33, no. 4, pp. 901–910, 2015.10.1109/JLT.2015.2392784Search in Google Scholar
[29] M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Topics. Quantum Electron., vol. 19, no. 4, 6100117, 2013.10.1109/JSTQE.2012.2235413Search in Google Scholar
[30] J. Witzens, “High-speed silicon photonics modulators,” Proc. IEEE, vol. 106, no. 12, pp. 2158–2182, 2018.10.1109/JPROC.2018.2877636Search in Google Scholar
[31] J. Zhou, Q. Zhang, J. Wang, L. Zhu, and J. Hong, “Model and design of silicon photonic carrier-depletion Mach-Zehnder modulators for 400 Gb/s and beyond PAM and QAM applications,” Proc. SPIE 10923, 1092318, 2019.10.1117/12.2508165Search in Google Scholar
[32] L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light-Sci. Appl., vol. 3, e173, 2014.10.1038/lsa.2014.54Search in Google Scholar
[33] J. Wang and S. Lee, “Ge-photodetectors for Si-based optoelectronic integration,” Sensors, vol. 11, no. 1, pp. 696–718, 2011.10.3390/s110100696Search in Google Scholar PubMed PubMed Central
[34] P. Eng, S. Song, and B. Ping, “State-of-the-art photodetectors for optoelectronic integration at telecommunication wavelength,” Nanophotonics, vol. 4, no. 3, pp. 277–302, 2015.10.1515/nanoph-2015-0012Search in Google Scholar
[35] S. Lischke, D. Knoll, C. Mai, L. Zimmermann, A. Peczek, M. Kroh, A. Trusch, E. Krune, K. Voigt, and A. Mai, “High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode,” Opt. Express, vol. 23, no. 21, pp. 27213–27220, 2015.10.1364/OE.23.027213Search in Google Scholar PubMed
[36] M. J. R. Heck and H. Mohammadhosseini, “Energy-efficient millimeter-wave generation using silicon photonics,” Proc. SPIE 10108, 1010800, 2017.10.1117/12.2253014Search in Google Scholar
[37] H. Mohammadhosseini and M. J. R. Heck, “Silicon photonics to improve the energy-efficiency of millimeter wave communication systems,” 2017 International Topical Meeting on Microwave Photonics (MWP), Beijing, 2017.10.1109/MWP.2017.8168654Search in Google Scholar
[38] F. Schwartau, S. Preussler, M. Krueckemeier, F. Pfeiffer, H. Stuelzebach, T. Schneider, and J. Schoebel, “Modular wideband high angular resolution 79 GHz radar system,” in 2019 12th German Microwave Conference (GeMiC), Stuttgart, Germany, pp. 194–197, 2019.10.23919/GEMIC.2019.8698121Search in Google Scholar
[39] Texas Instruments, “AWR1243 Single-Chip 77- and 79-GHz FMCW Transceiver,” SWRS188A, 2018.Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston