Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 17, 2019

Fully Dielectric Rod Antenna Arrays with Integrated Power Divider

  • Henning Tesmer ORCID logo EMAIL logo , Roland Reese , Ersin Polat , Matthias Nickel , Rolf Jakoby and and Holger Maune
From the journal Frequenz


This paper presents an overview of fully dielectric antenna arrays with integrated dielectric power dividers developed at Technische Universität Darmstadt as an extension of previous work. The power dividers are based on the principle of multimode interference and offer one- and two-dimensional power division in a single step, which allows the realization of small and lightweight devices. In order to prove the concept, 1 × 4 and 4 × 4 fully dielectric antenna arrays with integrated power dividers milled from Rexolite are designed, realized and characterized, operating between 90 GHz and 105 GHz. To assess miniaturization and beamsteering capabilities, three 1 × 4 arrays composed of different materials, Rexolite, Preperm L300 and Preperm L440, are compared regarding gain, size, weight and element spacing. Depending on array size and material, gain is between 12.5 dBi and 22 dBi, accompanied with sidelobe levels below - 7.5. All demonstrators are realized by milling, but the designs show the potential to be 3D printed or injection molded for large scale manufacturing.


The authors would like to thank CST AG, Germany, for providing CST Studio Suite and Premix Oy, Rajamäki, Finland, for supply of the Preperm materials.

The authors are with the Institute for Microwave Engineering and Photonics, Technische Universitaet Darmstadt, Germany.


[1] M. Geiger, M. Hitzler, S. Saulig, J. Iberle, P. Hugler and C. Waldschmidt, “A 160-GHz radar with flexible antenna used as a sniffer probe,” IEEE Sens. J., vol. 17, no. 16, pp. 5104–5111, Aug. 2017.10.1109/JSEN.2017.2718100Search in Google Scholar

[2] H.-U. Nickel and J. Zovo, “Novel flexible dielectric waveguide for millimeter and sub-millimeter frequencies - design and characterization,” in 84th ARFTG Microwave Meas. Conf., IEEE, Dec. 2014.10.1109/ARFTG.2014.7013404Search in Google Scholar

[3] M. Jost, R. Reese, M. Nickel, H. Maune and R. Jakoby, “Fully dielectric interference-based SPDT with liquid crystal phase shifters,” IET Microwaves Antennas Propag., vol. 12, no. 6, pp. 850–857, May 2018.10.1049/iet-map.2017.0695Search in Google Scholar

[4] R. Reese, M. Jost, H. Maune and R. Jakoby, “Design of a continuously tunable w-band phase shifter in dielectric waveguide topology,” in 2017 IEEE MTT-S Int. Microwave Symp. (IMS), IEEE, Jun. 2017.10.1109/MWSYM.2017.8058991Search in Google Scholar

[5] D. Chicherin, M. Sterner, J. Oberhammer, S. Dudorov, D. Lioubtchenko, A. J. Niskanen, V. Ovchinnikov and A. V. Räisänen, “MEMS based high-impedance surface for millimetre wave dielectric rod waveguide phase shifter,” in Proc. 40th Eur. Microwave Conf., Sep. 2010, pp. 950–953.Search in Google Scholar

[6] A. A. Generalov, D. V. Lioubtchenko and A. V. Räisänen, “Reconfigurable mm-wave phase shifter based on high impedance surface with carbon nanotube membrane MEMS,” in Proc. Global Symp. Millimeter-Waves (GSMM), May 2015, pp. 1–3.10.1109/GSMM.2015.7175112Search in Google Scholar

[7] S. Kobayashi, R. Mittra and R. Lampe, “Dielectric tapered rod antennas for millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. 30, no. 1, pp. 54–58, Jan. 1982.10.1109/TAP.1982.1142758Search in Google Scholar

[8] J. P. Pousi, D. V. Lioubtchenko, S. N. Dudorov and A. V. Raisanen, “High permittivity dielectric rod waveguide as an antenna array element for millimeter waves,” IEEE Trans. Antennas Propag., vol. 58, no. 3, pp. 714–719, Mar. 2010.10.1109/TAP.2009.2039314Search in Google Scholar

[9] A. Rivera-Lavado, S. Preu, L. E. Garcia-Munoz, A. Generalov, J. M. de Paz, G. Dohler, D. Lioubtchenko, M. Mendez-Aller, S. Malzer, D. Segovia-Vargas and A. V. Raisanen, “Array of dielectric rod waveguide antennas for millimeter-wave power generation,” in 2015 Eur. Microwave Conf. (EuMC), IEEE, Sep. 2015.10.1109/EuMC.2015.7345913Search in Google Scholar

[10] Y. Konishi, Y. Aramaki, S. Yamaguchi, I. Naito, N. Yoneda and M. Ohtsuka, “Millimeter-wave waveguide-type array antennas using low-loss engineering plastics,” in Proc. 3rd Eur. Conf. Antennas Propag., Mar. 2009, pp. 520–524.Search in Google Scholar

[11] M. Jost, R. Reese, J. Pauls, J. S. K. Gautam, R. Gemble, C. Weickhmann, O. H. Karabey and R. Jakoby, “Comparison of hollow waveguide and dielectric fibre based spdt switches for w-band,” in Proc. German Microwave Conf. (GeMiC), Mar. 2016, pp. 140–143.10.1109/GEMIC.2016.7461576Search in Google Scholar

[12] S. Raghuwanshi, V. Kumar, D. Chack and S. Kumar, “Propagation study of y-junction optical splitter using BPM,” in 2012 Int. Conf. Commun. Sys. Network Technol., IEEE, May 2012.10.1109/CSNT.2012.140Search in Google Scholar

[13] L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol., vol. 13, no. 4, pp. 615–627, Apr. 1995.10.1109/50.372474Search in Google Scholar

[14] M. Bachmann, P. A. Besse and H. Melchior, “General self-imaging properties in n× n multimode interference couplers including phase relations,” Appl. opt., vol. 33, no. 18, pp. 3905–3911, 1994.10.1364/AO.33.003905Search in Google Scholar PubMed

[15] R. Reese, M. Jost, M. Nickel, E. Polat, R. Jakoby and H. Maune, “A fully dielectric lightweight antenna array using a multimode interference power divider at w-band,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 3236–3239, 2017.10.1109/LAWP.2017.2771385Search in Google Scholar

[16] R. Reese, H. Tesmer, M. Jost, E. Polat, M. Nickel, R. Jakoby and H. Maune, “A compact two-dimensional power divider for a dielectric rod antenna array based on multimode interference,” J. Infrared Millimeter Terahertz Waves, vol. 39, no. 12, pp. 1185–1202, Aug. 2018.10.1007/s10762-018-0535-xSearch in Google Scholar

[17] R. Reese, H. Tesmer, E. Polat, M. Jost, M. Nickel, R. Jakoby and H. Maune, “Fully dielectric rod antenna arrays with high permittivity materials,” in 2019 12th Ger. Microwave Conf. (GeMiC), IEEE, Mar. 2019.10.23919/GEMIC.2019.8698141Search in Google Scholar

[18] H. Talbot, “LXXVI. facts relating to optical science. no. IV,” London Edinburgh Dublin Philos. Mag. J. Sci., vol. 9, no. 56, pp. 401–407, Dec. 1836.10.1080/14786443608649032Search in Google Scholar

[19] G. Friedsam and E. Biebl, “Precision free-space measurements of complex permittivity of polymers in the w-band,” in 1997 IEEE MTT-S Int. Microwave Symp. Dig., IEEE.Search in Google Scholar

[20] E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J., vol. 48, no. 7, pp. 2071–2102, Sep. 1969.10.1002/j.1538-7305.1969.tb01166.xSearch in Google Scholar

[21] C. Yeh and F. I. Shimabukuro, The Essence of Dielectric Waveguides. Springer US, 2008, pp. 85–87.10.1007/978-0-387-49799-0Search in Google Scholar

[22] T. Trinh, J. Malherbe, and R. Mittra, “A metal-to-dielectric waveguide transition with application to millimeter-wave integrated circuits,” in 1980 IEEE MTT-S International Microwave symposium Digest. IEEE, 1980, pp. 205–207.Search in Google Scholar

[23] D. Khalil and A. Yehia, “Two-dimensional multimode interference in integrated optical structures,” J. Opt. A: Pure Appl. Opt., vol. 6, no. 1, pp. 137–145, Nov. 2003. [Online]. Available: in Google Scholar

[24] R. Reese, M. Jost, E. Polat, M. Nickel, R. Jakoby and H. Maune, “Beam steering capabilities of a fully dielectric antenna array,” in Proc. IEEE Int. Symp. Antennas Propag. USNC/URSI National Radio Sci. Meeting, Jul. 2018, pp. 2187–2188.10.1109/APUSNCURSINRSM.2018.8608191Search in Google Scholar

[25] Premix Oy, Finland. [Online]. Available: in Google Scholar

[26] H. Maune, M. Jost, R. Reese, E. Polat, M. Nickel and R. Jakoby, “Microwave liquid crystal technology,” Crystals, vol. 8 (9),no. 355, Sep. 2018.10.3390/cryst8090355Search in Google Scholar

[27] P. I. Deffenbaugh, R. C. Rumpf and K. H. Church, “Broadband microwave frequency characterization of 3-d printed materials,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 3, no. 12, pp. 2147–2155, Dec. 2013.10.1109/TCPMT.2013.2273306Search in Google Scholar

[28] A. Jimenez-Saez, M. Schubler, C. Krause, D. Pandel, K. Rezer, G. V. Bogel, N. Benson and R. Jakoby, “3D printed alumina for low-loss millimeter wave components,” IEEE Access, vol. 7, pp. 40 719–40 724, 2019.10.1109/ACCESS.2019.2906034Search in Google Scholar

Received: 2019-03-13
Published Online: 2019-10-17
Published in Print: 2019-11-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.5.2023 from
Scroll to top button