Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 16, 2020

Wear-level-monitoring on electrical conductors with high-frequency alternating currents

  • Philipp Lenz ORCID logo EMAIL logo , Armin Wittmann and Georg Fischer
From the journal Frequenz


In this paper, a methodical approach for the in-situ monitoring of the mechanical wear of electrical conductors is presented. The state of life can be assessed by means of the characteristic attenuation of an applied high-frequency alternating current. The advantages of this approach include its non-destructive nature and the applicability to installed and otherwise inaccessible conductors.

Corresponding author: Philipp Lenz, Laboratory for Applied Production Engineering, Trier University of Applied Sciences, 54293 Trier, Germany, E-mail:


The authors would like to express their sincere thanks to Klaus Faber AG for their financial support.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


[1] ICSG, The World Copper Factbook 2019, Lisbon, International Copper Study Group, 2019 [Online]. Available at: in Google Scholar

[2] S. Fassbinder, “Elektrische Leiter – Alternativen zu Kupfer?,” Elektrotechnik, vol. 4, no. 8, pp. 3–9, 2008 [Online]. Available at: in Google Scholar

[3] A. Auerswald and R. Hartig, Erstellung eines PE-Mittelspannungs-Kabel-Ersatz-Konzeptes, Mittweida, Institut für Energiemanagement an der Hochschule Mitweida, 2018 [Online]. Available at: in Google Scholar

[4] Zentralverband Elektrotechnik- und Elektronikindustrie, Der Fachverband Kabel und isolierte Drähte im Überblick 2018/2019 [Online]. Available at: in Google Scholar

[5] T. Ehlenz, Multiphysikalische Betrachtung von Kabeln und Leitungen unter mechanisch-dynamischer Belastung, vol. 1, Shaker, Düren, 2020.Search in Google Scholar

[6] K. Dies, Kupfer und Kupferlegierungen in der Technik, Berlin, Heidelberg, Germany, Springer-Verlag, 1967.10.1007/978-3-642-48931-0Search in Google Scholar

[7] O. Georg, Elektromagnetische Wellen: Grundlagen und durchgerechnete Beispiele, Berlin, Heidelberg, Springer Berlin Heidelberg; Imprint; Springer, 1997.10.1007/978-3-642-59055-9Search in Google Scholar

[8] O. Georg, Elektromagnetische Felder und Netzwerke: Anwendungen in Mathcad und PSpice, Berlin, Heidelberg, Springer, 1999.10.1007/978-3-642-58420-6Search in Google Scholar

[9] K. Küpfmüller, W. Mathis, and A. Reibiger, Theoretische Elektrotechnik, Berlin, Heidelberg, Springer Berlin Heidelberg, 2013.10.1007/978-3-642-37940-6Search in Google Scholar

[10] G. Gold, Modellierung rauher Oberflächen und Materialcharakterisierung für den Entwurf von Leiterplatten für Hochfrequenzanwendungen, München, Verlag Dr. Hut, 2016.Search in Google Scholar

[11] P. Baron, Wissensaufbau, multiphysikalische Untersuchung und Variation mechanischer Parameter des Leiterwerkstoffs Kupfer, Master thesis, Trier, Trier University of Applied Sciences, 2020.Search in Google Scholar

[12] Copper Development Association, Coppers: high conductivity coppers (electrical) [Online]. Available at: in Google Scholar

[13] Kupfer und Kupferlegierungen, Gezogener Runddraht aus Kupfer zur Herstellung elektrischer Leiter, DIN EN 13602, 2013.Search in Google Scholar

Received: 2020-08-24
Accepted: 2020-11-02
Published Online: 2020-11-16
Published in Print: 2021-03-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.6.2023 from
Scroll to top button