Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 15, 2015

Analysis of spatial variability of near-surface soilmoisture to increase rainfall-runoff modellingaccuracy in SW Hungary

P. Hegedüs, S. Czigány, E. Pirkhoffer, L. Balatonyi and R. Hickey
From the journal Open Geosciences

Abstract

Between September 5, 2008 and September 5,2009, near-surface soil moisture time series were collectedin the northern part of a 1.7 km2 watershed in SWHungaryat 14 monitoring locations using a portable TDR-300 soilmoisture sensor. The objectives of this study are to increasethe accuracy of soil moisture measurement at watershedscale, to improve flood forecasting accuracy, and to optimizesoil moisture sensor density.

According to our results, in 10 of 13 cases, a strong correlationexists between the measured soil moisture dataof Station 5 and all other monitoring stations; Station 5is considered representative for the entire watershed. Logically,the selection of the location of the representativemeasurement point(s) is essential for obtaining representativeand accurate soil moisture values for the given watershed.This could be done by (i) employing monitoringstations of higher number at the exploratory phase of themonitoring, (ii) mapping soil physical properties at watershedscale, and (iii) running cross-relational statisticalanalyses on the obtained data.

Our findings indicate that increasing the number of soilmoisture data points available for interpolation increasesthe accuracy of watershed-scale soil moisture estimation.The data set used for interpolation (and estimation ofmean antecedent soil moisture values) could be improved(thus, having a higher number of data points) by selectingpoints of similar properties to the measurement pointsfrom the DEM and soil databases. By using a higher numberof data points for interpolation, both interpolation accuracyand spatial resolution have increased for the measuredsoil moisture values for the Pósa Valley.

References

[1] Graeff T., Zehe E., Blume T., Francke T., Schröder B., Predictingevent response in a nested catchment with generalized linearmodels and a distributed watershed model. Hydrological Processes,2012, 26, 3749–3769.10.1002/hyp.8463Search in Google Scholar

[2] Penna D., Borga M., Norbiato D., Dalla Fontana G., Hillslope scalesoil moisture variability in a steep alpine terrain. Journal of Hydrology,2009, 364: 311-327.10.1016/j.jhydrol.2008.11.009Search in Google Scholar

[3] Brocca L., Morbidelli R., Moramarco T., Melone F., Soil moisturespatial variability in experimental areas of central-Italy. Journalof Hydrology, 2007, 333, 356-373.10.1016/j.jhydrol.2006.09.004Search in Google Scholar

[4] Zehe E., Blöschl G., Predictability of hydrologic responseat the plot and catchment scales—the role of initial conditions.Water Resources Research, 2004, 40, 10, W10202. DOI:10.1029/2003WR002869.10.1029/2003WR002869Search in Google Scholar

[5] Billa L., Assilzadeh H., Mansor S., Mahmud A. R., Ghazali A. H.,Comparison of recorded rainfall with quantitative precipitationforecast in a rainfall-runoff simulation for the Langat river basin,Malaysia. Central European Journal of Geosciences, 2011, 3, 3,309-317.10.2478/s13533-011-0030-6Search in Google Scholar

[6] Pandey V., Pandey P. K., Spatial and temporal variability of soilmositure. International Journal of Geosciences, 2010, 1, 87-98.10.4236/ijg.2010.12012Search in Google Scholar

[7] Püspöki Z., Szabó S., Demeter G., Szalai K., McIntosh R.W.,Vincze L., Németh G., Kovács I., The statistical relationship betweenunconfined compressive strengths and the frequency distributionsof slope gradients: A case study in northern Hungary.Geomorphology, 2005, 71, 3-4, 424-436.10.1016/j.geomorph.2005.04.011Search in Google Scholar

[8] Watanabe K., Kito T., Shuhui D., Wu J., Greer R.C., Flury M., Waterinfiltration into a frozen soil with simultaneous melting ofthe frozen layer. Vadose Zone J., 12, DOI:10.2136/vzj2011.0188,2013, Abstract (dx.doi.org/10.2136/vzj2011.0188).10.2136/vzj2011.0188Search in Google Scholar

[9] Hegedüs P., Czigány S., László B., Pirkhoffer E., Analysis of soilboundary conditions of flash floods in a small basin in SW Hungary.Central European Journal of Geosciences, 2013, 5, 1, 97-111.10.2478/s13533-012-0119-6Search in Google Scholar

[10] Minea G., Assessment of flash flood potential of Bâsca Rivercatchment (Romania) based on physiographic factors. CentralEuropean Journal of Geosciences, 2013, 4, 3, 344-353.10.2478/s13533-012-0137-4Search in Google Scholar

[11] Borga M., Gaume E., Creutin J.D., Marchi L., Surveying flashfloods: gauging the ungauged extremes. Hydrological Processes,2008, 22, 18, 3883–3885. DOI: 10.1002/hyp-7111.Search in Google Scholar

[12] Cassardo C., Balsamo G.P., Cacciamani C., Cesari D.,Paccagnella T., Pelosini R., Impact of soil surface moistureinitialization on rainfall in a limited area model, a case study ofthe 1995 South Ticino flash flood. Hydrological Processes, 2002,16, 1301-1317.10.1002/hyp.1063Search in Google Scholar

[13] Brocca L., Melone F., Moramarco T., Morbidelli R., Antecedentwetness conditions based on ERS scatterometer data. Journal ofHydrology, 2009, 364, 73-87.10.1016/j.jhydrol.2008.10.007Search in Google Scholar

[14] Heathman G.C., Cosh M.H., Merwade V., Han E.,Multi-scale temporalstability analysis of surface and subsurface within the UpperCedar Creek Watershed, Indiana. Catena, 2012, 95, 91-10310.1016/j.catena.2012.03.008Search in Google Scholar

[15] Koren V., Moreda F., Smith M., Use of soil moisture observationsto improve parameter consistency inwatershed calibration.Physics and Chemistry of the Earth, 2008, 33, 1068-1080.10.1016/j.pce.2008.01.003Search in Google Scholar

[16] Miralles D.G., Crow W.T., Cosh M.H., Estimating Spatial SamplingErrors in Coarse-Scale SoilMoisture Estimates Derived fromPoint-Scale Observations. Journal of Hydrometeorology, 2010, 11,1423-1429.10.1175/2010JHM1285.1Search in Google Scholar

[17] Albertson J. D., Kiely G., On the structure of soil moisture timeseries in the context of land surface models. Journal of Hydrology,2000, 243, 101-119.10.1016/S0022-1694(00)00405-4Search in Google Scholar

[18] Mohanty B. P., Skaggs T. H., Spatio-temporal evolution andtime-stable characteristics of soil moisture within remote sensingfootprints with varying soil, slope, and vegetation. Advancesin Water Resources, 2001, 24, 1051-1067.10.1016/S0309-1708(01)00034-3Search in Google Scholar

[19] Wang C., Zuo Q., Zhang R., Estimating the necessary samplingsize of surface soil moisture at different scales using a randomcombination method. Journal of Hydrology, 2008, 352, 309–321.10.1016/j.jhydrol.2008.01.011Search in Google Scholar

[20] Wang L., Qu J. J., Satellite remote sensing applications for surfacesoilmoisture monitoring: a review. Frontiers of Earth Sciencein China, 2009, 3 (2), 237-247.10.1007/s11707-009-0023-7Search in Google Scholar

[21] Venkatesh B., Lakshman N., Puranara B. K., Reddy V. B., Analysisof observed soil moisture patterns under different land covers inWestern Ghats, India. Journal of Hydrology, 2011, 397, 281-294.10.1016/j.jhydrol.2010.12.006Search in Google Scholar

[22] Lacava T., Brocca L., Calice G., Melone F., Moramarco T., PergolaN., Tramutoil V., Soil moisture variations monitoring by AMSUbasedsoil wetness indices: a long-term inter-comparison withground measurements. Remote Sensing of Environment, 2010,114, 2317-2325.10.1016/j.rse.2010.05.008Search in Google Scholar

[23] Fu B., Wang J., Chen L., Qiu Y., The effects of landuse onsoil moisture variation in the Danangou catchment of the LoessPlateau, China. Catena, 2003, 54, 197-213.10.1016/S0341-8162(03)00065-1Search in Google Scholar

[24] Loew A., Schlenz F., A dynamic approach for evaluating coarsescalesatellite soil moisture products. Hydrology and Earth SystemSciences, 2011, 15, 75-90.10.5194/hess-15-75-2011Search in Google Scholar

[25] Westcott N. E., Knapp V. H., Hilberg S. D., Comparison of gageand multi-sensor precipitation estimates over range of spatialand temporal scales in the Mid-Western United States. Journalof Hydrology, 2008, 351, 1-12.10.1016/j.jhydrol.2007.10.057Search in Google Scholar

[26] Bárdossy A., Lehmann W., Spatial distribution of soil moisturein a small catchment. Part 1: geostatistical analysis. Journal ofHydrology, 1998, 206, 1-15.10.1016/S0022-1694(97)00152-2Search in Google Scholar

[27] Zhu Q., Lin H., Influences of soil, terrain, and crop growth on soilmoisture variation from transect to farm scales. Geoderma, 2011,163, 45-54.10.1016/j.geoderma.2011.03.015Search in Google Scholar

[28] Hu W., Shao M.-A., Hou M. T., She D. L., Si B. C., Mean soil watercontent estimation using measurements from time stable locations of adjacent or distant areas. Journal of Hydrology, 2013,497: 234-243.10.1016/j.jhydrol.2013.05.046Search in Google Scholar

[29] Jia Y.-H., Shao M.-A., Jia X.-X., Spatial pattern of soil moistureand its temporal stability within profiles on a loessial slope innorthwestern China. Journal of Hydrology, 2013, 495: 150-161.10.1016/j.jhydrol.2013.05.001Search in Google Scholar

[30] Penna D., Brocca L., Borga M., Dalla Fontana, G., Soil moisturetemporal stability at different depths on two alpine hillslopesduring wet and dry periods. Journal of Hydrology, 2013, 477: 55-71.10.1016/j.jhydrol.2012.10.052Search in Google Scholar

[31] Yao X., Fu B., Lü Y., Sun F., Wang S., Liu M., Comparison of fourspatial interpolation methods for estimating soil moisture in acomplex terrain catchment. PloS one, 2013, 8 (1), e54660.10.1371/journal.pone.0054660Search in Google Scholar PubMed PubMed Central

[32] Czigány S., Pirkhoffer E., Geresdi I., Impact of extreme rainfalland soil moisture on flash flood generation. Időjárás, 2010, 114,79-100.Search in Google Scholar

[33] Keresztény B., Ilisics N., Balatonyi L., Hegedüs P., Pirkhoffer E.,Czigány S., [Collecting and employment of soil parameters for numericalflash flood modeling in ultra-small watersheds]. Riscurisi Catastrofe, 2011, 9, 45-57.Search in Google Scholar

[34] Cosh M. H., Jackson T. J., Bindlish R., Pruegger J. H., Watershedscale temporal and spatial stability of soil moisture and its role invalidating satellite estimates. Remote Sensing of Environment,2004, 92, 427-435.10.1016/j.rse.2004.02.016Search in Google Scholar

[35] Cosh M. H., Jackson T. J., Starks P., Heathman G., Temporal stabilityof surface soil moisture in the Little Washita River watershedand its applications in satellite soil moisture product validation.Journal of Hydrology, 2006, 323, 168-177.10.1016/j.jhydrol.2005.08.020Search in Google Scholar

[36] Gyenizse P., Vass P., A természeti környezet szerepe a Nyugat-Mecsek településeinek kialakulásában és fejlődésében. [Role ofphysical environment on the development in the settlements ofthe Western-Mecsek Hills]. Földrajzi Értesítő– Hungarian GeographicalBulletin, 1998, 47, 131-148 (in Hungarian with Englishsummary).Search in Google Scholar

[37] Lóczy D., A vízellátottság mint tájtulajdonság értékelése különbözőföldértékelési rendszerekben. [Assessing water availabilityas a landscape property in various land evaluation schemes]. FöldrajziÉrtesítő – Hungarian Geographical Bulletin, 2011, 49, 215-234 (in Hungarian).Search in Google Scholar

[38] Brocca L., Melone F., Moramarco T., Morbidelli R., Spatialtemporalvariability of soil moisture and its estimation acrossscales. Water Resources Research, 46, 1- 14.10.1029/2009WR008016Search in Google Scholar

[39] Weyman D. R., measurement of the downslope flow of water ina soil. Journal of Hydrology, 1973, 20, 267-288.10.1016/0022-1694(73)90065-6Search in Google Scholar

[40] Anderson M. G., Kneale P. E., Topography and hillslope soil waterrelationships in a catchment of low relief. Journal of Hydrology,1980, 47, 115-128.10.1016/0022-1694(80)90051-7Search in Google Scholar

Received: 2014-08-29
Accepted: 2014-10-28
Published Online: 2015-04-15

©2015 P. Hegedüs et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow