Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access August 17, 2015

Lower crustal zircons reveal Neogene metamorphism beneaththe Pannonian Basin (Hungary)

  • Hilary Downes , Andrew Carter , Richard Armstrong , Gabor Dobosi and Antal Embey-Isztin
From the journal Open Geosciences


Neogene alkaline intraplate volcanic depositsin the Pannonian Basin (Hungary) contain many lowercrustal granulite-facies xenoliths. U-Pb ages have been determinedfor zircons separated from a metasedimentaryxenolith, using LA-ICPMS and SHRIMP techniques. Thezircons show typical metamorphic characteristics and arenot related to the hostmagmatism. The oldest age recordedis late Devonian, probably related to Variscan basementlithologies. Several grains yield Mesozoic dates for theircores, which may correspond to periods of orogenic activity.Most of the zircons show young ages, with some beingPalaeocene-Eocene, but the majority being youngerthan 30Ma. The youngest zircons are Pliocene (5.1-4.2 Ma)and coincide with the age of eruptions of the host alkalibasalts. Such young zircons, so close to the eruption age,are unusual in lower crustal xenoliths, and imply that theheat flow in the base of the Pannonian Basin was sufficiently high to keep many of them close to their blockingtemperature. This suggests that metamorphism is continuingin the lower crust of the region at the present day.


[1] Rudnick R.L., Williams I.S., Dating the lower crust by ion microprobe.Earth Planet. Sci. Lett., 1987, 85, 145–161.10.1016/0012-821X(87)90028-8Search in Google Scholar

[2] Downes H., Peltonen P., Manttari L., Sharkov E.V., Proterozoiczircon ages from lower crustal granulite xenoliths, Kola Peninsula,Russia: evidence for crustal growth and reworking. J. Geol.Soc., 2002, 159, 485–488.10.1144/0016-764901-162Search in Google Scholar

[3] Peltonen P.,Manttari I., Huhma H., Whitehouse M.J.,Multi-stageorigin of the lower crust of the Karelian craton from 3.5 to 1.7 Gabased on isotopic ages of kimberlite- derived mafic granulitexenoliths. Precambrain Res., 2006 147, 107–123.10.1016/j.precamres.2006.02.008Search in Google Scholar

[4] Koreshkova M.Yu., Downes H., Nikitina L.P., Vladykin N.V., LarionovA.N., Sergeev S.A., Trace element and age characteristicsof zircons in granulite xenoliths from the Udachnaya kimberlitepipe, Siberia. Precambrain Res., 2009, 168, 197–212.10.1016/j.precamres.2008.09.007Search in Google Scholar

[5] Rossi P., Cocherie A., Fanning C.M., Deloule E., Variscan to eo-Alpine events recorded in European lower-crust zircons sampledfrom the FrenchMassif Central and Corsica, France. Lithos,2006, 87, 235–260.10.1016/j.lithos.2005.06.009Search in Google Scholar

[6] Horvath F., Bada G., Szafian P., Tari G., Adam A., Cloetingh S.,Formation and deformation of the Pannonian Basin: constraintsfrom observational data. In: Geological Society of London Memoir32, European Lithosphere Dynamics, Gee D.G., StephensonR.A. (Eds.), 2006, 191–206.Search in Google Scholar

[7] Csontos L., Vörös A., Mesozoic plate tectonic reconstructionsof the Carpathian region. Palaeogeogr. Palaeoclimatol.Palaeoecol., 2004, 210, 1–56.10.1016/j.palaeo.2004.02.033Search in Google Scholar

[8] Tari G., Dunkl I., Horvath F., Lenkey L., Szafian P., Toth T.,Vakarcs, G., Lithospheric structure of the Pannonian basin derivedfrom seismic, gravity and geothermal data. In: DurandB., Jolivet L., Horvat, F., Seranne M. (Eds.): The Mediterraneanbasins: Tertiary extension within the Alpine Orogen. Geol. Soc.London Spec. Publ., 1999, 156, 215–250.Search in Google Scholar

[9] Fodor L., Csontos L., Bada G., Benkovics L.,Gyorfi I., Tertiary tectonicevolution of the Pannonian basin system and neighbouringorogens: a new synthesis of palaeostress data. In: DurandB., Jolivet L., Horvath F., Seranne M. (Eds.): The Mediterraneanbasins: Tertiary extension within the Alpine Orogen. Geol. Soc.London Spec. Publ., 1999, 156, 295–334.Search in Google Scholar

[10] Szafian P., Horvath F., Crustal structure in the Carpatho-Pannonian region: insights from three-dimensional gravitymodelling and their geodynamic significance. Int. J Earth Sci.,2005, 95, 50–67.10.1007/s00531-005-0488-xSearch in Google Scholar

[11] Horvath F., Towards a quantitative model for the PannonianBasin. Tectonophysics, 1993, 226, 333–358.10.1016/0040-1951(93)90126-5Search in Google Scholar

[12] Lenkey L., Dövenyi P., Horvath F., Cloetingh S.A.P.L., Geothermicsof the Pannonian basin and its bearing on the neotectonics.EGU Stephan Mueller Special Publication Series, 2002, 3,29–40.10.5194/smsps-3-29-2002Search in Google Scholar

[13] Bodri L., Geothermal model of the Earth’s crust in the PannonianBasin. Tectonophysics, 1981, 79, 225–236.10.1016/0040-1951(81)90114-1Search in Google Scholar

[14] Embey-Isztin A., Scharbert H.G., Deitrich H., Poultidis H., Petrologyand geochemistry of peridotite xenoliths in alkali basaltsfrom the Transdanubian Volcanic Region, West Hungary. J.Petrol., 1989, 30, 79–105.10.1093/petrology/30.1.79Search in Google Scholar

[15] Embey-Isztin A., Scharbert H.G., Deitrich H., Poultidis H., Maficgranulite and clinopyroxenite xenoliths from the TransdanubianVolcanic Region (Hungary): implications for the deep structureof the Pannonian Basin. Mineral. Mag., 1990, 54, 463–483.10.1180/minmag.1990.054.376.12Search in Google Scholar

[16] Embey-Isztin A., Downes H., Kempton P.D., Dobosi G., ThirlwallM.F., Lower crustal granulite xenoliths from the PannonianBasin, Hungary. Part 1: mineral chemistry, thermobarometryand petrology. Contrib. Mineral. Petr., 2003, 144, 652–670.10.1007/s00410-002-0421-2Search in Google Scholar

[17] Wijbrans J., Nemeth K., Martin U., Balogh K., 40Ar/39Argeochronology of Neogene phreatomagmatic volcanism in thewestern Pannonian Basin, Hungary. J Volcanol. Geoth. Res.,2007, 164, 193–204.10.1016/j.jvolgeores.2007.05.009Search in Google Scholar

[18] Kempton P.D., Downes H., Embey-Isztin, A., Mafic granulitexenoliths in Neogene alkali basalts from the western PannonianBasin: insights into the lower crust of a collapsed orogen. J.Petrol., 1997, 38, 941–970.10.1093/petroj/38.7.941Search in Google Scholar

[19] Dobosi G., Kempton P.D., Downes H., Embey-Isztin A., ThirlwallM.F., Greenwood P., Lower crustal granulite xenoliths from thePannonian Basin, Hungary. Part 2: Sr-Nd-Pb-Hf and O isotopeevidence for formation of continental lower crust by tectonicemplacement of oceanic crust. Contrib. Mineral. Petr., 2003,144, 671–683.10.1007/s00410-002-0422-1Search in Google Scholar

[20] Török K., Dégi J., Szep A., Marosi Gy., Reduced carbonic fluidsin mafic granulite xenoliths from the Bakony-Balaton Highlandvolcanic field, W-Hungary. Chem. Geol., 2005, 223, 93–108.10.1016/j.chemgeo.2005.05.010Search in Google Scholar

[21] Dégi J., Abart R., Török K., Rhede D., Petrishcheva E. . Evidencefor xenolith- host basalt interaction from chemical patterns inFe-Ti oxides from mafic granulite xenoliths from the Bakony-Balaton volcanic field (W-Hungary). Miner. Petrol., 2009, 95,219–234.10.1007/s00710-008-0035-0Search in Google Scholar

[22] Dégi J., Abart R., Török K.,Bali E.,Wirth R., Rhede D., Symplectiteformation during decompression induced garnet breakdown inlower crustal mafic granulite xenoliths: mechanisms and rates.Contrib. Mineral. Petr., 2010, 159, 293–314.10.1007/s00410-009-0428-zSearch in Google Scholar

[23] Kovács I., Szabó C., Petrology and geochemistry of granulitexenoliths beneath the Nógrád-Gömör volcanic field,Carpathian-Pannonian region (N-Hungary/S-Slovakia). Miner.Petrol., 2005, 85, 269–290.10.1007/s00710-005-0090-8Search in Google Scholar

[24] Csontos L., Nagymarosy A., Horvath F., Kovac M., Tertiary evolutionof the intra-Carpathian area: A model. Tectonophysics,1992, 208, 221–241.10.1016/B978-0-444-89912-5.50017-XSearch in Google Scholar

[25] Lelkes-Felvari G., Sassi F.P., Outlines of the pre-Alpine metamorphismsin Hungary. In: Karamara S., Sassi F.P. (Eds.) IGCP No 5.Newsletter, 1981, 3, 193–195.Search in Google Scholar

[26] Svojtka M., Koš J., Venera Z., Dating granulite-facies structuresand the exhumation of lower crust in the Moldanubian Zone ofthe Bohemian Massif. Int. J. Earth Sci., 2001, 91, 373–385.10.1007/s00531-001-0230-2Search in Google Scholar

[27] Pearce N.J.G., Perkins W.T., Westgate J.A., Gorton M.P., JacksonS.E., Neal C.R., Chenery S.P.. A compilation of new and publishedmajor and trace element data for NIST SRM 610 and NISTSRM 612 glass reference materials. Geostand. Geoanal. Res.,1997, 21, 115–144.10.1111/j.1751-908X.1997.tb00538.xSearch in Google Scholar

[28] Cumming G.L., Richards J.R., Ore lead isotope ratios in a continuouslychanging Earth. Earth Planet. Sci. Lett., 1975, 28, 155–171.10.1016/0012-821X(75)90223-XSearch in Google Scholar

[29] Ludwig K., Isoplot 3.0. Berkeley Geochronology Center SpecialPublication, 2003, 4.Search in Google Scholar

[30] Williams I.S. U-Th-Pb geochronology by ion microprobe. Reviewsin Economic Geology, 1998, 7, 1–35.10.5382/Rev.07.01Search in Google Scholar

[31] Ludwig K.R., SQUID 1.03, A User’s Manual; BerkeleyGeochronology Center Special Publication, 2001, 2, 19.Search in Google Scholar

[32] Black L.P. et al., Improved 206Pb/238U microprobe geochronologyby monitoring of a trace-element-related matrix effect;SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentationfor a seriesof zircon standards. Chem. Geol., 2004, 205,115–140.Search in Google Scholar

[33] Claoué-Long J.C., Compston W., Roberts J., Fanning C.M., TwoCarboniferous ages: a comparison of SHRIMP zircon datingwith conventional zircon ages and 40Ar/39Ar analysis. In:Geochronology, Time Scales and Global Stratigraphic Correlation,Berggen W.A., Kent D.V., Aubry M.P., Hardenbol J. (Eds.),SEPM Special Publication, 1995, 4, 3–21.Search in Google Scholar

[34] Steiger R.H, Jäger E., Subcommission on geochronology: conventionon the use of decay constants in geochronology andcosmochronology. Earth Planet. Sci. Lett., 1977, 36, 359–362.10.1016/0012-821X(77)90060-7Search in Google Scholar

[35] Stacey J.S., Kramers J. D., Approximation of terrestrial lead isotopeevolution by a two-stage model. Earth Planet. Sci. Lett.,1975, 26, 207–221.10.1016/0012-821X(75)90088-6Search in Google Scholar

[36] Corfu F., Hanchar J.M., Hoskin P.W.O., Kinny P., Atlas of zircontextures. In: Hanchar J.M., Hoskin P.W.O. (Eds.), Zircon, Rev.Mineral. Geochem., 2003, 53, 469–495.10.1515/9781501509322-019Search in Google Scholar

[37] Alvarez-Valero A.M., Kreigsman L.M., Crustal thinning and maficunderplating beneath the Neogene Volcanic Province (BeticCordillera, SE Spain): evidence from crustal xenoliths. TerraNova, 2007, 19, 266–271.10.1111/j.1365-3121.2007.00745.xSearch in Google Scholar

[38] Wilde S.A., Zhou X., Nemchin A.A., Sun, M., Mesozoic crustmantleinteraction beneath the North China Craton: a consequenceof the dispersal of Gondwanaland and accretion of Asia.Geology, 2003, 31, 817–820.10.1130/G19489.1Search in Google Scholar

[39] Fernandez-Suares J., Arenas R., Jeffries T.E., Whitehouse M.J.,Villaseca C.. A U-Pb study of zircons from a lower crustal granulitexenolith of the Spanish Central System: a record of Iberianlithospheric evolution from the Neoproterozoic to the Triassic.J. Geol., 2006, 114, 471–483.10.1086/504180Search in Google Scholar

[40] Roberts M.P., Finger F., Do U-Pb zircon ages from granulitesreflect peak metamorphic conditions? Geology, 1997, 25, 319–322.10.1130/0091-7613(1997)025<0319:DUPZAF>2.3.CO;2Search in Google Scholar

Received: 2014-08-25
Accepted: 2015-01-27
Published Online: 2015-08-17

©2015 H. Downes et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 2.3.2024 from
Scroll to top button