Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 12, 2015

Soil-atmosphere relationships: The Hungarianperspective

  • Ferenc Ács , Kálmán Rajkai , Hajnalka Breuer , Tamás Mona and Ákos Horváth
From the journal Open Geosciences


This study discusses scientific contributions analyzingsoil-atmosphere relationships. These studies dealwith both the biogeophysical and biogeochemical aspectsof this relationship, with biogeophysical aspects beingin the majority. All of the studies refer either directly orindirectly to the fundamental importance of soil moisturecontent. Moisture has a basic influence on the spatiotemporalpattern of evapotranspiration, and so 1) oncloud formation and precipitation events by regulatingthe intensity of convection, and 2) on the trace-gas exchangesin the near-surface atmosphere. Hungarian modelingefforts have highlighted that soils in the PannonianBasin have region-specific features. Consequently, shallowand deep convection processes are also, to some extent,region-specific, at least in terms of the diurnal changeof the planetary boundary layer height and the spatial distributionof convective precipitation. The soil-dependentregion-distinctiveness of these two phenomena has beenrecognized; at the same time the strength of the relationshipshas not yet been quantified.


Search in Google Scholar

[1] Charney J.G., Dynamics of deserts and drought in the Sahel,Q. J. R. Meteorol. Soc. 1975, 101, 193-20210.1002/qj.49710142802Search in Google Scholar

[2] Nicholson S.E., The West African Sahel: A review of recentstudies on the rainfall regime and its interannual variability,ISRN Meteorology 2013, Article ID 453521, 32 pp10.1155/2013/453521Search in Google Scholar

[3] Charney J.G., Stone P., Quirk W., Drought in the Sahara. A biophysicalfeedback mechanism, Science 1975, 187, 434-43510.1126/science.187.4175.434Search in Google Scholar

[4] Charney J.G., Quirk W., Chow S., Kornfield J., A comparativestudy of the effects of albedo change on drought in semi-aridregions, J. Atmos. Sci. 1977, 34(9), 1366–138610.1175/1520-0469(1977)034<1366:ACSOTE>2.0.CO;2Search in Google Scholar

[5] Delsol F., Miyakoda F., Clarke R., Parameterized processesin the surface boundary layer of an atmospheric circulationmodel, Q. J. R. Meteorol. Soc. 1971, 97, 181–20810.1002/qj.49709741205Search in Google Scholar

[6] Randall D.A., Abeles J., Corsetti T., Seasonal simulations of thePBL and boundary-layer stratocumulus clouds with a GCM, J.Atmos. Sci. 1985, 42, 641–67610.1175/1520-0469(1985)042<0641:SSOTPB>2.0.CO;2Search in Google Scholar

[7] Hahmann A.N., Dickinson R., RCCM2-BATS model over tropicalSouth America: Applications to tropical deforestation, J. Climate1997, 10, 1944–196410.1175/1520-0442(1997)010<1944:RBMOTS>2.0.CO;2Search in Google Scholar

[8] Shao Y.P., Physics and Modelling of Wind Erosion, SpringerNetherlands, Dordrecht, 200810.1007/978-1-4020-8895-7Search in Google Scholar

[9] Shao Y.P., Leslie L.M., Wind erosion prediction over the Australiancontinent, J. Geophys. Res. 1997, 102, 30091–3010510.1029/97JD02298Search in Google Scholar

[10] Ostle N.J., Smith P., Fisher R., Woodward F.I., Fisher J.B., SmithJ.U., Galbraith D., Levy P., Meir P., McNamara N.P., BardgettR.D., Integrating plant-soil interactions into global carbon cyclemodels, J. Ecol. 2009, 97, 851–86310.1111/j.1365-2745.2009.01547.xSearch in Google Scholar

[11] Smith K., Ball T., Conen F., Dobbie K., Massheder J., Rey A.,Exchange of greenhouse gases between soil and atmosphere:Interactions of soil physical factors and biological processes,Eur. J. Soil Sci. 2003, 54, 779–79110.1046/j.1351-0754.2003.0567.xSearch in Google Scholar

[12] Hofstra N., Bouwman A.F., Denitrification in agricultural soils:Summarizing published data and estimating global annualrates, Nutr. Cycl. Agroecosyst. 2005, 72, 521–52710.1007/s10705-005-3109-ySearch in Google Scholar

[13] Inglett K.S., Inglett P., Reddy K.R., Osborn T.Z., Temperaturesensitivity of greenhouse gas production in wetland soils ofdifferent vegetation, Biogeochemistry 2012, 108, 77–9010.1007/s10533-011-9573-3Search in Google Scholar

[14] Wilson M., Henderson-Sellers A., Dickinson R., Kennedy P.,Sensitivity of the biosphere-atmosphere transfer scheme(BATS) to the inclusion of variable soil characteristics, J. Appl.Meteor. Climatol. 1987, 26, 341–36210.1175/1520-0450(1987)026<0341:SOTBTS>2.0.CO;2Search in Google Scholar

[15] Mihailovic D., de Bruin H., Jeftic M., van Duken A., A study ofthe sensitivity of land surface parameterization to the inclusionof different fractional covers and soil textures, J. Appl. Meteor.Climatol. 1992, 31, 1477–148710.1175/1520-0450(1992)031<1477:ASOTSO>2.0.CO;2Search in Google Scholar

[16] Ek M., Cuenca R., Variations in soil parameters: Implicationsfor modeling surface fluxes and atmospheric boundary-layerdevelopment, Boundary-Layer Meteorol. 1994, 70, 369–38310.1007/BF00713776Search in Google Scholar

[17] Cuenca R., Ek M., Mahrt L., Impact of soil water property parameterizationon atmospheric boundary layer simulation, J.Geophys. Res. 1996, 101(D3), 7269–727710.1029/95JD02413Search in Google Scholar

[18] Wetzel P., Argentini S., Boone A., Role of land surface in controllingdaytime cloud amount: Two case studies in the GCIPSWarea, J. Geophys. Res. 1996, 101, 7359–737010.1029/95JD02134Search in Google Scholar

[19] Ek M., Holtslag A., Influence of soilmoisture on boundary layercloud development, J. Hydrometeor. 2004, 5, 86–9910.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2Search in Google Scholar

[20] Schär C., Lüthi D., Beyerle U., Heise E., The soil-precipitationfeedback: A process studywith a regional climate model, J. Climate1999, 12, 722–74110.1175/1520-0442(1999)012<0722:TSPFAP>2.0.CO;2Search in Google Scholar

[21] Koster R., Suarez M., Higgins W., den Dool H.V., Observationalevidence that soil moisture variations affectprecipitation, Geophys. Res. Lett. 2003, 30(5), 1241.doi:10.1029/2002GL01657110.1029/2002GL016571Search in Google Scholar

[22] Koster R., Dirmeyer P., Guo Z., Bonan G., Chan E., Cox P., et al.,Regions of strong coupling between soil moisture and precipitation,Science 2004, 305, 1138–114010.1126/science.1100217Search in Google Scholar PubMed

[23] Seneviratne S., Lüthi D., Litschi M., Schär C., Land-atmospherecoupling and climate change in Europe, Nature 2006, 443,205–20910.1038/nature05095Search in Google Scholar PubMed

[24] Clark R., Brown S., Murphy J., Modeling northern hemispheresummer heat extreme changes and their uncertainties usinga physics ensemble of climate sensitivity experiments, J. Climate2006, 19(17), 4418–443510.1175/JCLI3877.1Search in Google Scholar

[25] Diffenbaugh N., Giorgi J.P.F., Gao X., Heat stress intensificationin the Mediterranean climate change hotspot, Geophys. Res.Lett. 2007, 34(11), 1–610.1029/2007GL030000Search in Google Scholar

[26] Clapp R.B., Hornberger G.M., Empirical equations for some hydraulicproperties, Water Resour. Res. 1978, 14, 601–60410.1029/WR014i004p00601Search in Google Scholar

[27] Cosby B.J., Hornberger G.M., Clapp R.B., Ginn T.R., A statisticalexploration of the relationships of soil moisture characteristicsto the physical properties of soils, Water Resour. Res.1984, 20, 682–69010.1029/WR020i006p00682Search in Google Scholar

[28] Schaap M.G., Leij F.J., Database-related accuracy and uncertaintyof pedotransfer functions, Soil Sci. 1998, 163, 765–77910.1097/00010694-199810000-00001Search in Google Scholar

[29] Pachepsky Y.A., Rawls W.J., Accuracy and reliability of pedotransferfunctions as affected by grouping soils, Soil Sci. Soc.Am. J. 1999, 63, 1748–175710.2136/sssaj1999.6361748xSearch in Google Scholar

[30] Li C., Frolking S., Frolking T., A model of nitrous oxide evolutionfrom soil driven by rainfall events: 1. Model structure andsensitivity, J. Geophys. Res. 1992, 97, 9759–977610.1029/92JD00509Search in Google Scholar

[31] Conen F., Dobbie K., Smith K., Predicting N2O emissionsfrom agricultural land through related soil parameters, Glob.Change Biol. 2000, 6, 417–42610.1046/j.1365-2486.2000.00319.xSearch in Google Scholar

[32] Brockett B., Prescott C., Grayston S., Soil moisture is the majorfactor influencing microbial community structure and enzymeactivities across seven biogeoclimatic zones in westernCanada, Soil Biol. Biochem. 2012, 44, 9–2010.1016/j.soilbio.2011.09.003Search in Google Scholar

[33] Frostegard A., Tunlid A., Baath E., Use and misuse ofPLFA measurements in soils, Soil Biol. Biochem. 2010,doi:10.1016/j.soilbio.2010.11.02110.1016/j.soilbio.2010.11.021Search in Google Scholar

[34] Lauber C., Hamady M., Knight R., Fierer N., Pyrosequencingbasedassessment of soil pH as a predictor of soil bacterialcommunity structure at the continental scale, Appl. Environ.Microbiol., 2009, 75, 5111–512010.1128/AEM.00335-09Search in Google Scholar PubMed PubMed Central

[35] Breuer H., Ács F., Laza B., Horváth A., Matyasovszky I., RajkaiK., Sensitivity of MM5-simulated planetary boundary layerheight to soil dataset: Comparison of soil and atmospheric effects,Theor. Appl. Climatol. 2012, 109(3–4), 577–59010.1007/s00704-012-0597-ySearch in Google Scholar

[36] Breuer H., Ács F., Horváth A., Laza B.,Matyasovszky I., NémethP., et al., A sensitivity study on the soil parameter-boundarylayer height interrelationship, ISRN Meteorology 2012, ArticleID 786592, 7 pages, doi: 10.5402/2012/78659210.5402/2012/786592Search in Google Scholar

[37] Horváth A., Ács F., Breuer H., On the relationship betweensoil, vegetation and severe convective storms: Hungarian casestudies, Atmos. Res. 2009, 93, 66–8110.1016/j.atmosres.2008.10.007Search in Google Scholar

[38] Ács F., Horváth A., Breuer H., Rubel F., Effect of soil hydraulicparameters on the local convective precipitation, Meteorol. Z.2010, 19(2), 143–15310.1127/0941-2948/2010/0435Search in Google Scholar

[39] Várallyay G., Michéli E., Soil Atlas of Europe, European Soil BureauNetwork, European Commission, Oflce for Oflcial Publicationsof the European Communities, 2005Search in Google Scholar

[40] Nemes A., Multi-scale pedotransfer functions for Hungariansoils, Ph.D. thesis,Wageningen University, Netherlands, 2003Search in Google Scholar

[41] Fodor N., Rajkai K., Computer program (SOILarium1.0) for estimatingthe physical and hydrophysical properties of soils fromother soil characteristics, Agrokémia és Talajtan 2011, 60, 27–40Search in Google Scholar

[42] Czender C., Komjáthy E., Mészáros R., Lagzi I., Spatial andtemporalvariability of ozone deposition, Adv. Sci. Res. 2009, 3,5–710.5194/asr-3-5-2009Search in Google Scholar

[43] Ács F., Breuer H., Modeling of soil respiration in Hungary,Agrokémia és Talajtan 2006, 55(1), 59–6810.1556/agrokem.55.2006.1.7Search in Google Scholar

[44] Seneviratne S., Corti T., Davin E., Hirschi M., Jaeger E., LehnerI., et al., Investigating soil moisture-climate interactions in achanging climate: A review, Earth-Sci. Rev. 2010, 99, 125–16110.1016/j.earscirev.2010.02.004Search in Google Scholar

[45] Bonan G., Ecological Climatology, Cambridge University Press,Cambridge, 2002.Search in Google Scholar

[46] Rabb P., Natural conditions in the Carpathian Basin of the middleages, Periodica Polytechnica 2007, 38(2), 47–5910.3311/ in Google Scholar

[47] Borhidi A., Kevey B., Lendvai G., Plant communities of Hungary,Akadémiai Kiadó, Budapest, 2013Search in Google Scholar

[48] Wösten J., Lilly A., Nemes A., Bas C.L., Development and useof a database of hydraulic properties of European soils, Geoderma1999, 90, 169–18510.1016/S0016-7061(98)00132-3Search in Google Scholar

[49] Várallyay G., Szücs L., Rajkai K., Zilahy P., Murányi A., Hydrophysicalclassification and 1:100000 scale maps of Hungariansoils, Agrokémia és Talajtan, 1980, 29, 77–112 (in Hungarian with English summary)Search in Google Scholar

[50] Feddema J.J., A revised Thornthwaite-type global climate classification,Physical Geography 2005, 26, 442–46610.2747/0272-3646.26.6.442Search in Google Scholar

[51] Ács F., Horváth A., Breuer H., The role of soil in variations ofthe weather, Agrokémia és Talajtan 2008, 57, 225–23810.1556/agrokem.57.2008.2.1Search in Google Scholar

[52] Machon A., Horváth L., Weidinger T., Grosz B., Pintér K., TubaZ., et al., Estimation of net nitrogen flux between the atmosphereand a semi-natural grassland ecosystem in Hungary,Eur. J. Soil Sci. 2010, 61, 631–63910.1111/j.1365-2389.2010.01264.xSearch in Google Scholar

[53] Ács F., On transpiration and soilmoisture content sensitivity tosoil hydrophysical data, Boundary-Layer Meteorol. 2005, 115,473–49710.1007/s10546-004-5937-8Search in Google Scholar

[54] Garcia-Carreras L., Parker D.,Marshman J., What is the mechanismfor the modification of convective cloud distributions byland-surface induced flows? J. Atmos. Sci. 2011, 68, 619–63410.1175/2010JAS3604.1Search in Google Scholar

[55] Betts A.K., Fife atmospheric boundary layer budget methods,J. Geophys. Res. 1992, 97, 18, 523–18, 53110.1029/91JD03172Search in Google Scholar

[56] Zhang Y., Klein S., Mechanisms affecting the transition fromshallow to deep convection over land: Inferences from observationsof the diurnal cycle collected at the ARM SouthernGreat Plains site, J. Atmos. Sci. 2010, 67, 2943–295910.1175/2010JAS3366.1Search in Google Scholar

[57] Katul G., Oren R., Manzoni S., Higgins C., Parlange M., Evapotranspiration:A process driving mass transport and energyexchange in the soil-plant-atmosphere-climate system, Rev.Geophys. 2012, 50, RG3002, doi: 10.1029/2011RG00036610.1029/2011RG000366Search in Google Scholar

[58] Ács F., A comparative analysis of transpiration and bare soilevaporation, Boundary-Layer Meteorol. 2003, 109, 139–16210.1023/A:1025473221779Search in Google Scholar

[59] Sun S.F., Moisture and heat transport in a soil layer forcedby atmospheric conditions,Master’s thesis, University of Connecticut,USA, 1982Search in Google Scholar

[60] Dolman A.J., A multiple-source land surface energy balancemodel for use in general circulation models, Agric. For. Meteor.1993, 65, 21–4510.1016/0168-1923(93)90036-HSearch in Google Scholar

[61] Beljaars A.C.M., Bosveld F., Cabauw data for the validation ofland surface parameterization schemes, J. Climate 1997, 10,1172–119410.1175/1520-0442(1997)010<1172:CDFTVO>2.0.CO;2Search in Google Scholar

[62] Ács F., Szász G., Characteristics of microscale evapotranspiration:A comparative analysis, Theor. Appl. Climatol. 2002, 73,189–20510.1007/s00704-002-0686-4Search in Google Scholar

[63] Koster R.D., Suarez M.J., A comparative analysis of two landsurface heterogeneity representations, J. Climate 1992, 5,1379–139110.1175/1520-0442(1992)005<1379:ACAOTL>2.0.CO;2Search in Google Scholar

[64] Famiglietti J.S., Wood E.F., Multi-scale modeling of spatiallyvariable water and energy balance processes, Water Resour.Res. 1994, 30, 3061–307810.1029/94WR01498Search in Google Scholar

[65] Giorgi F., An approach for the representation of surface heterogeneityin land surface models. Part II. Validation and sensitivityexperiments, Mon. Wea. Rev. 1997, 125, 1900–191910.1175/1520-0493(1997)125<1900:AAFTRO>2.0.CO;2Search in Google Scholar

[66] Kim C.P., Entekhabi D., Impact of soil heterogeneity in a mixedlayermodel of the planetary boundary layer, Hydrolog. Sci. J.1998, 43(4), 633–65810.1080/02626669809492158Search in Google Scholar

[67] Shao Y., Sogallaa M., Kerschgens M., Brücher W., Effects ofland-surface heterogeneity upon surface fluxes and turbulentconditions, Meteorol. Atmos. Phys. 2001, 78, 157–18110.1007/s703-001-8171-3Search in Google Scholar

[68] Ronda R.J., van den Hurk B.J.J.M., Holtslag A.A.M., Spatial heterogeneityof the soil moisture content and its impact on surfaceflux densities and near-surface meteorology, J. Hydrometeor.2002, 3, 556–57010.1175/1525-7541(2002)003<0556:SHOTSM>2.0.CO;2Search in Google Scholar

[69] Ács F., Breuer H., Szász G., Estimation of actual evapotranspirationand soil water content in the growing season, Agrochemistryand Soil Science 2011, 60, 57–7410.1556/agrokem.60.2011.1.6Search in Google Scholar

[70] Breuer H., Ács F.,Water balance in Hungary in the 20th centurybased on a multi-layer soil model, Agrokémia és Talajtan 2011,60, 65–8610.1556/agrokem.60.2011.1.6Search in Google Scholar

[71] Szilágyi J., Józsa J., Estimating spatially distributed monthlyevapotranspiration rates by linear transformations of MODISdaytime land surface temperature data, Hydrol. Earth SystemSci. 2009, 13(5), 629–63710.5194/hess-13-629-2009Search in Google Scholar

[72] Szilágyi J., Kovács A., Complementary-relationship-basedevapotranspiration mapping (cremap) technique for Hungary,Periodica Polytechnica Civil Engineering 2010, 54(2), 95–10010.3311/ in Google Scholar

[73] Xu X., Yang D., Analysis of catchment evapotranspiration atdifferent scales using bottom-up and top-down approaches,Front. Archit. Civ. Eng. China 2010, 4(1), 657710.1007/s11709-010-0002-9Search in Google Scholar

[74] Mintz Y., Walker G.K., Global fields of soil moisture and landsurface evapotranspiration derived from observed precipitationand surface air temperature, J. Appl. Meteorol. 1993, 32,1305–133410.1175/1520-0450(1993)032<1305:GFOSMA>2.0.CO;2Search in Google Scholar

[75] Wang Q., Takahashi H., A land surface water deficit modelfor an arid and semiarid region: Impact of desertification onthe water deficit status in the Loess Plateau, China. J. Climate1999, 12, 244–25710.1175/1520-0442-12.1.244Search in Google Scholar

[76] Yang D., Sun F., Liu Z., Cong Z., Ni G., Lei Z., Analyzing spatialand temporal variability of annual water-energy balancein non-humid regions of china using the Budyko hypothesis,Water Resour. Res. 2007, 43, doi: 10.1029/2006WR005224,W0442610.1029/2006WR005224Search in Google Scholar

[77] Vivoni E.R., Rodriguez J.C., Watts C.J., On the spatiotemporalvariability of soil moisture and evapotranspirationin a mountainous basin within the North American monsoonregion, Water Resour. Res. 2010, 46, W02509, doi:10.1029/2009WR00824010.1029/2009WR008240Search in Google Scholar

[78] Vivoni E., Diagnosing seasonal vegetation impacts on evapotranspirationand its Ppartitioning at the catchment scale duringSMEX04-NAME. J. Hydrometeor. 2012, 13, 1631–163810.1175/JHM-D-11-0131.1Search in Google Scholar

[79] Doutriaux-Boucher M., Webb M., Gregory J., Boucher O., Carbondioxide induced stomatal closure increases radiative forcingvia a rapid reduction in low cloud, Geophys. Res. Lett.2008, 36, LO2703, doi: 10.1029/2008GL03627310.1029/2008GL036273Search in Google Scholar

[80] LeMone M., PennelW., The relationship of trade wind cumulusdistribution to subcloud layer fluxes and structure, Mon. Wea.Rev. 1976, 104, 524–53910.1175/1520-0493(1976)104<0524:TROTWC>2.0.CO;2Search in Google Scholar

[81] Breuer H., Ács F., Laza B., Rajkai K., Matyasovszky I., HorváthA.,Weidinger T., Relationship between the hydraulic propertiesof the soil and the planetary boundary layer, Agrokémiaés Talajtan 2012, 61(1), 9–28 (in Hungarian with English summary)10.1556/agrokem.60.2012.1.2Search in Google Scholar

[82] Fischer R.A., Frequency distribution of the values of the correlationcoeflcient in samples of an indefinitely large population,Biometrika 1915, 10, 507–52110.1093/biomet/10.4.507Search in Google Scholar

[83] Warrach-Sagi K., Schwitalla T., Wulfmeyer V., Bauer H.S., Evaluationof a climate simulation in Europe based on the WRFNOAHmodel system: Precipitation in Germany, Climate Dynam.2013, 41, 755–77410.1007/s00382-013-1727-7Search in Google Scholar

[84] Guillod B., Davin E., Kündig C., Smiatek G., Seneviratne S., Impactof soil map specifications for European climate simulations,Climate Dynam. 2013, 40, 123–14110.1007/s00382-012-1395-zSearch in Google Scholar

[85] Reichstein M., Beer C., Soil respiration across scales: The importanceof a model data integration framework for data interpretation,J. Plant Nutr. Soil Sci. 2008, 171, 344–35410.1002/jpln.200700075Search in Google Scholar

[86] Raich J., Schlesinger W., The global carbon dioxide flux in soilrespiration and its relationship to vegetation and climate, Tellus1992, 44B, 81–9910.1034/j.1600-0889.1992.t01-1-00001.xSearch in Google Scholar

[87] Reichstein M., Rey A., Freibauer A., Tenhunen J., Valentini R.,Banza J., et al., Modeling temporal and large-scale spatial variabilityof soil respiration from soil water availability, temperatureand vegetation productivity indices, Global Biogeochem.Cy. 2003, 17(4), doi: 10.1029/2003GB00203510.1029/2003GB002035Search in Google Scholar

[88] Gras A., Ginovart M., Valls J., Baveye P., Individual-based modellingof carbon and nitrogen dynamics in soils: Parameterizationand sensitivity analysis of microbial components, Ecol.Model. 2011, 222, 1998–201010.1016/j.ecolmodel.2011.03.009Search in Google Scholar

[89] Peng C.H., Guiot J., van Campo E., Past and future carbon balanceof European ecosystems from pollen data and climaticmodels simulations, Global Planet. Change 1998, 18, 189–20010.1016/S0921-8181(98)00021-6Search in Google Scholar

[90] Beier C., Emmett B., Tietema A., Schmidt I., Penuelas J.,Kovács-Láng E., et al., Carbon and nitrogen balances for sixshrublands across Europe, Global Biogeochem. Cy. 2009, 23,GB400810.1029/2008GB003381Search in Google Scholar

[91] Lellei-Kovács E., Kovács-Láng E., Botta-Dukát Z., Kalapos T.,Emmett B., Beier C., Thresholds and interactive effects of soilmoisture on the temperature response of soil respiration, Eur.J. Soil Biol. 2011, 47, 247–25510.1016/j.ejsobi.2011.05.004Search in Google Scholar

[92] Aiken R., Jawson M., Grochmmer K., Polymenopoulas A., Positional,spatially correlated and random components of variabilityin carbon-dioxide efflux, J. Environ. Quality 1991, 20,301–30810.2134/jeq1991.00472425002000010049xSearch in Google Scholar

[93] Cape J., Surface ozone concentrations and ecosystem health:past trends and a guide to future projections, Sci. Total Environ.2008, 400, 257–26910.1016/j.scitotenv.2008.06.025Search in Google Scholar

[94] Fowler D., Pilegaard K., Sutton M., Ambus P., RaivonenM., Duyzer J., et al., Atmospheric composition change:Ecosystems-atmosphere interactions, Atmos. Environ. 2009,43, 51935267Search in Google Scholar

[95] Sorimachi A., Sakamoto K., Ishihara H., Fukuyama T., UtiyamaM., Liu H., et al., Measurements of sulfur dioxide and ozonedry deposition over short vegetation in Nothern China-A preliminarystudy, Atmos. Environ. 2003, 37, 3157–3166.Search in Google Scholar

[96] Massman W., Toward an ozone standard to protect vegetationbased on effective dose: A review of deposition resistancesand the possible metric, Atmos. Environ. 2004, 38, 2323–233710.1016/j.atmosenv.2003.09.079Search in Google Scholar

[97] Mészáros R., Zsély I.G., Szinyei D., Vincze C., Lagzi I., Sensitivityanalysis of an ozone deposition model, Atmos. Environ.2009, 43, 663–67210.1016/j.atmosenv.2008.09.058Search in Google Scholar

[98] Nikolov N., Zeller K., Modeling coupled interactions of carbon,water, and ozone exchange between terrestrial ecosystemsand the atmosphere, Environ. Pollut. 2003, 124, 231–24610.1016/S0269-7491(02)00471-2Search in Google Scholar

[99] Delon C., Reeves C., Stewart D., Serca D., Dupont R., MariC., et al., Biogenic emissions of nitrogen oxides from soils:Impact on ozone formation in West Africa, Ileaps Newsletter2009, Issue No. 6, 28–30Search in Google Scholar

[100] Van Veen J.A., Frissel M., Simulation of nitrogen behaviour ofsoil-plant systems. Pudoc, Centre for Agricultural Publishingand Documentation, Wageningen, 1981Search in Google Scholar

[101] Tanji K., Modeling of soil nitrogen cycle, Agronomy 1982, 22,721–77210.2134/agronmonogr22.c19Search in Google Scholar

[102] Molina J.A.E., Clapp C.E., Shaffer M.J., Chichester F.W., LarsonW.E., NCSOIL, A model of nitrogen and carbon transformationsin soil: Description, calibration and behavior, Soil Sci. Soc.Am. J. 1983, 47, 85–9110.2136/sssaj1983.03615995004700010017xSearch in Google Scholar

[103] Li C., Mosier A.,Wassmann R., Cai Z., Zheng X., Huang Y., et al.,Modeling greenhouse gas emissions from rice-based productionsystems: Sensitivity and upscaling, Global Biogeochem.Cycles 2004, 18, GB1043, doi: 10.1029/2003GB00204510.1029/2003GB002045Search in Google Scholar

[104] Machon A., Determination of nitrogen exchange between thegrassland and atmosphere on the landscape scale using measurementsand model calculations, Ph.D. thesis, Szent IstvánUniversity, Hungary, 2011 (in Hungarian)Search in Google Scholar

[105] Grosz B.P., Machon A., Horváth L. The DNDC process-orientedecosystem model. In: Haszpra L (Ed.), Atmospheric greenhousegases, Springer Science + Business Media, Dordrecht,2010, 211–214Search in Google Scholar

[106] Horváth L., Asztalos M., Führer E., Mészáros R., WeidingerT., Measurement of ammonia exchange over grassland in theHungarian great plain, Agric. For. Meteor. 2005, 130, 282–29810.1016/j.agrformet.2005.04.005Search in Google Scholar

[107] Stéfanon M., Drobinski P., D’Andrea F., Lebeaupin-Brossier C.,Bastin S., Soil moisture-temperature feedbacks at meso-scaleduring summer heat waves over Western Europe, Climate Dynam.2013, DOI 10.1007/s00382-013-1794-910.1007/s00382-013-1794-9Search in Google Scholar

[108] Fischer E., Seneviratne S., Lüthi D., Schär C., Contributionof land-atmosphere coupling to recent European summerheat waves, Geophys. Res. Lett. 2007, 34:L06707,doi:10.1029/2006 GL029068Search in Google Scholar

[109] Fischer E., Seneviratne S., Vidale P., Lüthi D., Schär C., Soilmoisture-atmosphere interactions during the 2003 Europeansummer heat wave, J. Climate 2007, 20, 5081–509910.1175/JCLI4288.1Search in Google Scholar

[110] Elfatih A., Eltahir B., Pal J., Relationship between surface conditionsand subsequent rainfall in convective storms, J. Geophys.Res. 1996, 101(D21), 26237–2624510.1029/96JD01380Search in Google Scholar

[111] Findell K., Eltahir E., Atmospheric controls on soil moistureboundarylayer interactions. Part II: Feedbacks within the continentalUnited States, J. Hydrometeor. 2003, 4(3), 570–58310.1175/1525-7541(2003)004<0570:ACOSML>2.0.CO;2Search in Google Scholar

[112] Beljaars A., Viterbo P., Miller M., Betts A., The anomalous rainfallover the United States during July 1993: Sensitivity to landsurface parameterization and soil moisture, Mon. Wea. Rev.1996, 124(3), 362–38310.1175/1520-0493(1996)124<0362:TAROTU>2.0.CO;2Search in Google Scholar

[113] Rowntree P., Bolton J., Simulation of the atmospheric responseto soil moisture anomalies over Europe, Q. J. R. Meteorol. Soc.1983, 109, 501–52610.1002/qj.49710946105Search in Google Scholar

[114] Raich J., Tufekcioglu A., Vegetation and soil respiration: Correlationsand controls, Biogeochemistry 2000, 48, 71–9010.1023/A:1006112000616Search in Google Scholar

[115] Högberg P., Nordgren A., Buchmann N., Taylor A., Ekblad A.,Högberg M., et al., Large-scale forest girdling shows that currentphotosynthesis drives soil respiration, Nature 2001, 411,789–79210.1038/35081058Search in Google Scholar PubMed

[116] de Arellano J., Ouwersloot H., Baldocchi D., Jacobs C., Shallowcumulus rooted in photosynthesis, Geophys. Res. Lett. 2014,10.1002/2014GL059279Search in Google Scholar

[117] Heus T., van Heerwaarden C.C., Jonker H.J.J., Siebesma A.P.,Axelsen S., van den Dries K., et al., Formulation of the Dutch AtmosphericLarge-eddy Simulation (DALES) and overview of itsapplications, Geoscientific Model Development, 2010, 3, 415–44410.5194/gmd-3-415-2010Search in Google Scholar

[118] Guo Z., Dirmeyer P., Koster R., Bonan G., Chan E., Cox P., et al.,GLACE: The Global Land-Atmosphere Coupling Experiment.Part II: Analysis, J. Hydrol. 2006, 7, 611–62510.1175/JHM511.1Search in Google Scholar

[119] Nemes A., Unsaturated soil hydraulic database of Hungary:HUNSODA, Agrokémia és Talajtan 2002, 51(1–2), 17–2610.1556/agrokem.51.2002.1-2.3Search in Google Scholar

[120] Santanello J., Peters-Lidard C., Kumar S., Diagnosing thesensitivity of local land-atmosphere coupling via the soil moisture-boundary layer interaction, J. Hydrol. 2011, 12, 766–78610.1175/JHM-D-10-05014.1Search in Google Scholar

[121] Santanello J., Peters-Lidard C., Kumar S., Alonge C., Tao W.K.,A modeling and observational framework for diagnosing localland-atmosphere coupling on diurnal time scales, J. Hydrometeor.2009, 10, 577–59910.1175/2009JHM1066.1Search in Google Scholar

Received: 2014-03-20
Accepted: 2015-05-12
Published Online: 2015-10-12

©2015 F. Ács et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 5.12.2023 from
Scroll to top button