Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 13, 2015

Natural radioactivity distribution and gammaradiation exposure of beach sands close to Kavalapluton, Greece

  • Argyrios Papadopoulos , Antonios Koroneos , Georgios Christofides and Stylianos Stoulos
From the journal Open Geosciences

Abstract

This study aims to evaluate the activity concentrationsof 238U, 226Ra, 232Th, 228Th and 40K along thebeaches of Kavala being adjacent to the rock-types of theKavala pluton. These ranged from 14–940, 16–1710, 26–4547, 27–4488 and 194–1307 Bq/kg respectively, representingthe highest values of natural radioactivity measuredin sediments of Greece. The (%wt.) heavy magnetic (HM)(allanite, amphibole, mica, clinopyroxene, magnetite andhematite) fraction, the heavy non-magnetic (HNM) (monazite,zircon, titanite and apatite) fraction and the totalheavy fraction (TH), were correlated with the concentrationsof the measured radionuclides in the bulk samples.The heavy fractions seem to control the activity concentrationsof 238U and 232Th of all the samples, showingsome local differences in the main 238U and 232Th mineralcarrier. The measured radionuclides in the beach sandswere normalized to the respective values measured in thegranitic rocks, which are their most probable parentalrocks, so as to provide data upon their enrichment or depletion.The annual equivalent dose varies between 0.01and 0.35 mSv y−1 for tourists and from 0.03 to 1.48 mSv y−1for local people working on the beach.

References

Search in Google Scholar

[1] Pettijohn F.J., Potter P.E., Siever R., Sand and Sandstones,Springer, New York, 198710.1007/978-1-4612-1066-5Search in Google Scholar

[2] Alam M.N., Chowdhury M.I., Kamal M., Ghose S., Islam M.N.,Mustafa M.N., Miah M.M.H., Ansary M.M., The 226Ra, 232Th and40K activities in Beach Sand minerals and beach soils of Cox’sBazar, Bangladesh, J. Environ. Radioactiv. 1999, 46, 243–25010.1016/S0265-931X(98)00143-XSearch in Google Scholar

[3] Freitas A.C. and Alencar A.S., Gamma dose rates and distributionof natural radionuclides in sand beaches. Ilha GrandeSoutheastern Brazil, J. Environ. Radioactiv. 2004, 75, 211–223.Search in Google Scholar

[4] UNSCEAR, Sources and effects of ionizing radiation. United NationsScientific Committee on the Effect of Atomic Radiation,New York, 1993Search in Google Scholar

[5] UNSCEAR, Sources and effects of ionizing radiation. United NationsScientific Committee on the Effect of Atomic Radiation,New York, 2000Search in Google Scholar

[6] Hammoud N.S., Concentration of Monazite from Egyptian blacksand, employing industrial techniques, M.Sc. Thesis, Faculty ofScience Cairo University, 1966, GeizaSearch in Google Scholar

[7] De Meijer R. J., Put L. W., Schuiling R. D., de Reus J. H., WiersmaJ., Provenance of coastal sediments using natural radioactivityof heavy mineral sands, Radiat. Prot. Dosim 1988, 24 (174), 55–5810.1093/rpd/24.1-4.55Search in Google Scholar

[8] De Meijer R.J., James I.R., Jennings P.J., Koeyers J.E., Clusteranalysis of radionuclide concentrations in beach sand, Appl.Radiat. Isot. 2001, 54, 535–542.Search in Google Scholar

[9] Dabbour G.A., Estimation of the economic mineral reserves inRosetta Beach Sands, Egypt. J. Miner. 1995, 7, 153–166Search in Google Scholar

[10] Mahmoud A.A., Moustafa I.M., Mahdy I.A., Integrated geophysicaland mineralogical studies on the sand deposits of KomMashaal beach, East of Rosetta distributary, Egypt J Appl Geophysics2004, 3(1), 185–204Search in Google Scholar

[11] Mohanty A. K., Sengupta D., Das S. K., Vijayan V., Saha S. K.,Natural radioactivity in the newly discovered high backgroundradiation area on the eastern coast of Orissa, India. Radiat.Meas. 2004, 38, 153–165.Search in Google Scholar

[12] Singh S., Rani A.,Mahajan R.K., 226Ra, 232Th and 40K analysis insoil samples from some areas of Punjab and Himachal Pradesh,India using gamma ray spectrometry, Radiat. Meas. 2005, 39,431–439.Search in Google Scholar

[13] Veiga R., Sanches N., Anjos R.M., Macario K., Bastos J.,Iguatemy M., Measurement of Natural Radioactivity in BrazilianBeach Sands, Radiat. Meas. 2006, 41, 189–196.Search in Google Scholar

[14] Vassas C., Pourcelot L., Vella C., Carpéna J., Pupin J.P., BouissetP., Guillot L., Mechanisms of enrichment of natural radioactivityalong the beaches of the Camargue, France. J. Environ. Radioactiv.2006, 91, 146–15910.1016/j.jenvrad.2006.09.002Search in Google Scholar PubMed

[15] Harb S., Natural Radioactivity and external gamma radiationexposure at the coastal red sea in Egypt, Radiat. Prot. Dosim.2008, 130, 376–384.Search in Google Scholar

[16] Shetty P.K., Narayana Y., Rajashekara K.M., Depth profile studyof natural radionuclides in the environment of coastal Kerala, J.Radioanal. Nucl. Ch. 2011, 290, 159–16310.1007/s10967-011-1173-0Search in Google Scholar

[17] Nada A., Abd EL-Maksoud T. M., Abu Zeid H., El-Asy I. E., MostafaS. M. I., Abd El-Azeem S. A., Correlation between radionuclidesassociated with zircon and monazite in beach sand of Rosetta,Egypt. J. Radioanal. Nucl. Ch. 2012, 291, 601–61010.1007/s10967-011-1430-2Search in Google Scholar

[18] Margineanua R.M., Blebea-Apostu A.M., Celarel A., GomoiuC.M., Costea C., Dumitras D., Ion A., Duliu O.G., Radiometric,SEM and XRD investigation of the Chituc black sands, southernDanube Delta, Romania, Journal of Environmental Radioactivity2014, 138, 72–7910.1016/j.jenvrad.2014.08.006Search in Google Scholar PubMed

[19] Örgün Y., Altınsoy N., Şahin S.Y., Güngör Y., Gültekin A.H., KarahanG., Karacık Z., Natural and anthropogenic radionuclides inrocks and beach sands from Ezine region (Çanakkale), WesternAnatolia, Turkey, Appl. Radiat. Isot. 2007, 65, 739–747.Search in Google Scholar

[20] Papadopoulos A., Christofides G., Koroneos A., Stoulos S., Naturalradioactivity distribution and gamma radiation exposure ofbeach sands from Sithonia Peninsula, Central European Journalof Geosciences 2014, 6(2), 229–24210.2478/s13533-012-0157-0Search in Google Scholar

[21] Filippidis A., Misaelides P., Clouvas A., Godelitsas A., BarbayiannisN., Anousis I., Mineral, chemical and radiological investigationof a black sand at Touzla Cape, near Thessaloniki,Greece, Env. Geoch. And Health 1997, 19, 83–8810.1023/A:1018498404922Search in Google Scholar

[22] Pergamalis F., Karageorgiou D.E., Koukoulis A., Katsikis I., 2001,Mineralogical and chemical composition of sand ore deposits in the seashore zone N. Peramos-L. Eleftheron (N. Greece), BulGeol. Soc. Greece, XXXIV/3, 845–85010.12681/bgsg.17091Search in Google Scholar

[23] Kokkinakis A., Das Intrusivgebiet des Symvolon – Gebiergesund von Kavala in Ostmakedonien, Griechenland. Ph. D. Thesis,1977, Ludwig – Maximilians Univ. MünchenSearch in Google Scholar

[24] Neiva A., Christofides G., Eleftheriadis G., Soldatos T., Geochemistryof granitic rocks and their minerals from the Kavalapluton, Northern Greece. Chemie der Erde 1996, 56, 117–142Search in Google Scholar

[25] Papadopoulos A., Natural Radioactivity in Relation to Mineralogy,Geochemistry of Uranium and Thorium of Magmatic Rocksfrom Greece: Contribution to the Use of Natural Building Materials.Ph.D. Thesis., 2011, Aristotle University of Thessaloniki.Search in Google Scholar

[26] Kyriakopoulos K., Pezzino A., and Moro A.D., Rb-Sr geochronological,petrological and structural study of the Kavala plutoniccomplex (N. Greece): Bulletin of the Geological Society ofGreece 1989, 23, 545–560Search in Google Scholar

[27] Dinter D.A., Macfarlane A., Hames W., Isachsen C., Bowring S.,Royden L., U-Pb and 40Ar/39Ar geochronology of the Symvolongranodiorite: implications for the thermal and structural evolutionof the Rhodope metamorphic core complex, northeasternGreece, Tectonics 1995, 14, 886–908.10.1029/95TC00926Search in Google Scholar

[28] Dinter D.A., Royden L., Late Cenozoic extension in northernGreece: Strymon Valley detachment and Rhodope metamorphiccore complex, Geology 1993, 21, 45–48.10.1130/0091-7613(1993)021<0045:LCEING>2.3.CO;2Search in Google Scholar

[29] Koukouvelas I., Pe-Piper G., TheOligocene Xanthi pluton, NorthernGreece: a granodiorite emplaced during regional extension,J. Geol. Soc. London 1991, 148, 749–758.10.1144/gsjgs.148.4.0749Search in Google Scholar

[30] Jones C.E., Tarney J., Baker J.H., Gerouki F., Tertiary granitoids ofRhodope, northern Greece: magmatism related to extensionalcollapse of the Hellenic Orogen?, Tectonophysics 1992, 210,295–314.10.1016/0040-1951(92)90327-3Search in Google Scholar

[31] Kolocotroni C., The emplacement and petrogenesis of the Vrondougranitoid pluton, Rhodope Massif, NE Greece. PhD. Thesis,1992, University of Edinburgh, 425 pp.Search in Google Scholar

[32] Christofides G., Soldatos T., Eleftheriadis G., Koroneos A.,Chemical and isotopic evidence for source contamination andcrustal assimilation in the Hellenic Rhodope plutonic rocks,Acta Vulcanologica 1998, 10 (2), 305–318.Search in Google Scholar

[33] Kilias A. and Mountrakis D., Tertiary extension of the Rhodopemassif associatedwith graniteemplacement (Northern Greece),Acta Vulcanologica 1998, 10, 331–333.Search in Google Scholar

[34] Manolopoulou M., Stoulos S., Mironaki D., Papastefanou C.,A new technique for accurate measurements of Ra-226 with𝛾-spectroscopy in voluminous samples, Nucl. Inst. Methods A2002, 508, 362–366.10.1016/S0168-9002(03)01701-7Search in Google Scholar

[35] I.A.E.A., Preparation ofGamma-ray Spectroscopy ReferenceMaterialsRGU-1, RGTh-1 and RGK-1 Report-IAEA/RL/148, 1987, Vienna.Search in Google Scholar

[36] Kannan V., Rajan M. P., Iyengar M. A. R., Ramesh R., Distributionof natural and anthropogenic radionuclides in soil and beachsand samples of Kalpakkam (India) using hyper pure germanium(HPGe) gamma ray spectrometry, Appl. Radiat. Isot. 2002,57, 109–119.Search in Google Scholar

[37] Adams J.A.S., Osmond Y.K., Rogers J.J.W., The geochemistry ofuranium and thorium, Phys. Chem. Earth 1959, 3, 298–34310.1016/0079-1946(59)90008-4Search in Google Scholar

[38] Marocchi M., Righi S., Bargossi G.M., Gasparotto G., Natural radionuclidescontent and radiological hazard of commercial ornamentalstones: an integrated radiometric and mineralogicalpetrographicstudy, Radiat. Meas. 2011, 46, 538–54510.1016/j.radmeas.2011.03.017Search in Google Scholar

[39] Deer W.A., Howie R.A., Zussman J., Rock-Forming Minerals, Volume1B, Disilicates and Ring Silicates 1986, 629 p. Wiley, NewYork.Search in Google Scholar

[40] Papadopoulos A., Christofides G., Koroneos A., HauzenbergerC. U, Th and REE content of heavy minerals from beach sandsamples of Sithonia Peninsula (northern Greece), N. Jb. Miner.Abh. (J. Min. Geochem.) 2015, 192/2, 107–11610.1127/njma/2015/0274Search in Google Scholar

[41] Papadopoulos A., Christofides G., Koroneos A., PapadopoulouL., Papastefanou C., Stoulos S., Natural radioactivity and radiationindex of the major granitic plutons in Greece, J. Environ.Radioactiv. 2013, 124, 227–238.Search in Google Scholar

[42] Velasco H., Rizzotto M., Merkis N., Belli M., Sansone U., Contributionto the external gamma dose rate from 137Cs and 40K activityconcentrations determined in the vertical profile of sandybeaches, J. Radioanal. Nucl. Chem. 2007, 273(2), 395–39910.1007/s10967-007-6846-3Search in Google Scholar

[43] Antovic N.M., Antovic I., Svrkota N., Levels of 232Th activity inthe South Adriatic Sea marine environment of Montenegro, J.Radioanal. Nucl. Chem. 2010, 284, 605–61410.1007/s10967-010-0512-xSearch in Google Scholar

[44] Rizzotto M., Toso J., Velasco H., Belli M., Sansone U., Temporalreduction of the external gamma dose rate due to 137Csmobilityin sandy beaches, J. Radioanal. Nucl. Chem. 2009, 280(1), 193–19710.1007/s10967-009-7456-zSearch in Google Scholar

[45] Jabbar A., Arshed W., Bhatti A., Ahmad S., Ur-Rehman S., DilbandM., Measurement of soil radioactivity levels and radiationhazard assessment in mid Rechna interfluvial region, Pakistan.J. Radioanal. Nucl. Chem. 2010, 283, 371–37810.1007/s10967-009-0357-3Search in Google Scholar

[46] Tsuey-Lin T., Chi-Chang L., Chun-Yu C., Hwa-Jou W., Lee-ChungM., The effects of physico-chemical properties on natural radioactivitylevels, associated dose rate and evaluation of radiationhazard in the soil of Taiwan using statistical analysis, J.Radioanal. Nucl. Chem. 2011, 288, 3, 927–93610.1007/s10967-011-1032-zSearch in Google Scholar

[47] Keith F. Eckerman and Jeffrey C. Ryman, External exposure toradionuclides in air, water, and soil, Federal Guidance Report,No.12, (EPA – 402 -R-93-081), 1993.Search in Google Scholar

Received: 2015-02-10
Accepted: 2015-04-15
Published Online: 2015-10-13

©2015 A. Papadopoulos et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 2.10.2023 from https://www.degruyter.com/document/doi/10.1515/geo-2015-0043/html
Scroll to top button