Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 19, 2015

Tracking potential source areas of Central European loess:examples from Tokaj (HU), Nussloch (D) and Grub (AT)

  • Ann-Kathrin Schatz , Yue Qi , Wolfgang Siebel , Jiade Wu and Ludwig Zöller
From the journal Open Geosciences

Abstract

There are several competing hypotheses for theorigin of loess in Europe but quantitative evidence is stillrare. Here, Sr-Nd isotopic and bulk elemental compositionof loess from Marine Isotope Stages 2 and 3 fromthree study regions in Central Europe – Nussloch (Germany),Grub (Austria) and Tokaj (Hungary) - are analyzed.This study aims at examining differences and similaritiesof loess deposits throughout Europe, correlating loesswith potential source rocks from major mountain rangesand comparing loess with floodplain sediments from mainrivers as integrated samples of the drainage areas. The resultsshow that European loess deposits are largely uniformand that sediment sources have been rather stablein the Southern and Eastern parts of Central Europeand more variable in West Central Europe. However, themethods used are not sufficient to unequivocally confirmand reject potential sediment sources but, in combination,help to identify the most likely sediment origins. While adirect correlation of loess and potential source rocks is dif-ficult, the comparison with floodplain sediments is mostpromising and confirms previous hypotheses. Loess fromTokaj and Grub is most likely a mix of material transportedby the Danube River and sediments from the surroundingmountains. Rhine River sediments are probably the mainsource of loess at Nussloch.

References

[1] Smalley I.J., Leach J.A., The origin and distribution of the loessin the Danube basin and associated regions of East-Central Europe- A review. Sediment. Geol., 1978, 21, 1-26.10.1016/0037-0738(78)90031-3Search in Google Scholar

[2] Smalley I., O’Hara-Dhand K., Wint J., Machalett B., Jary Z., JeffersonI., Rivers and loess: The significance of long river transportationin the complex event-sequence approach to loess depositformation. Quatern. Int., 2009, 198, 7-18.10.1016/j.quaint.2008.06.009Search in Google Scholar

[3] Buggle B., Glaser B., Zöller L., Hambach U., Markovic S., GlaserI., Gerasimenko N., Geochemical characterization and origin ofSoutheastern and Eastern European loesses (Serbia, Romania,Ukraine). Quaternary Sci. Rev., 2008, 27, 1058-1075.10.1016/j.quascirev.2008.01.018Search in Google Scholar

[4] Thamó-Bozsó E., Kovács L.Ó., Magyari Á., Marsi I., Tracing theorigin of loess in Hungary with the help of heavy mineral compositiondata. Quatern. Int., 2014, 319, 11-21.10.1016/j.quaint.2013.04.030Search in Google Scholar

[5] Újvári G., Varga A., Ramos F.C., Kovács J., Németh T., StevensT., Evaluating the use of clay mineralogy, Sr–Nd isotopes andzircon U–Pb ages in tracking dust provenance: An example fromloess of the Carpathian Basin. Chem. Geol., 2012, 304-305.10.1016/j.chemgeo.2012.02.007Search in Google Scholar

[6] Újvári G., Varga A., Balogh-Brunstad Z., Origin, weathering, andgeochemical composition of loess in southwestern Hungary.Quaternary Res., 2008, 69, 421-437.10.1016/j.yqres.2008.02.001Search in Google Scholar

[7] Újvári G., Varga A., Raucsik B., Kovács J., The Paks loesspaleosolsequence: A record of chemical weathering and provenancefor the last 800 ka in the mid-Carpathian Basin. Quatern.Int., 2014, 319, 22-37.10.1016/j.quaint.2012.04.004Search in Google Scholar

[8] Muhs D.R., Budahn J.R., McGeehin J.P., Bettis III E.A., Skipp G.,Paces J.B., Wheeler E.A., Loess origin, transport, and depositionover the past 10,000 years, Wrangell-St. Elias National Park,Alaska. J. Aeolia, 2013, 11, 85-99.10.1016/j.aeolia.2013.06.001Search in Google Scholar

[9] Jahn B.-M., Gallet S., Han J., Geochemistry of the Xining, Xifengand Jixian sections, Loess Plateau of China: eolian dust provenanceand paleosol evolution during the last 140 ka. Chem.Geol., 2001, 178, 71-94.10.1016/S0009-2541(00)00430-7Search in Google Scholar

[10] Smith J., Vance D., Kemp R.A., Archer C., Toms P., King M., ZárateM., Isotopic constraints on the source of Argentinian loess –with implications for atmospheric circulation and the provenanceof Antarctic dust during recent glacial maxima. EarthPlanet. Sc. Lett., 2003, 212, 181-196.10.1016/S0012-821X(03)00260-7Search in Google Scholar

[11] Gallet S., Jahn B.-M., Van Vliet Lanoë B., Dia A., Rossello E.,Loess geochemistry and its implications for particle origin andcomposition of the upper continental crust. Earth Planet. Sc.Lett., 1998, 156, 157-172.10.1016/S0012-821X(97)00218-5Search in Google Scholar

[12] Chen J., Li G., Yang J., Rao W., Lu H., Balsam W., Sun Y., Ji J., Ndand Sr isotopic characteristics of Chinese deserts: Implications for the provenances of Asian dust. Geochim. Cosmochim. Ac.,2007, 71, 3904-3914.10.1016/j.gca.2007.04.033Search in Google Scholar

[13] Sun J., Provenance of loess material and formation of loess depositson the Chinese Loess Plateau. Earth Planet. Sc. Lett.,2002, 203, 845-859.10.1016/S0012-821X(02)00921-4Search in Google Scholar

[14] Sun, J., Nd and Sr isotopic variations in Chinese eolian depositsduring the past 8 Ma: Implications for provenancechange. Earth Planet. Sc. Lett., 2005, 240, 454-466, doi:10.1016/j.epsl.2005.09.01910.1016/j.epsl.2005.09.019Search in Google Scholar

[15] Zhang H., Lu H., Jiang S.-Y., Vandenberghe J.,Wang S., CosgroveR., Provenance of loess deposits in the Eastern Qinling Mountains(central China) and their implications for the paleoenvironment.Quaternary Sci. Rev., 2012, 43, 94-102.10.1016/j.quascirev.2012.04.010Search in Google Scholar

[16] Schatz A., Zech M., Buggle B., Gulyás S., Hambach U.,MarkovicS.B., Sümegi P., Scholten T., The late Quaternary loess recordof Tokaj, Hungary: Reconstructing palaeoenvironment, vegetationand climate using stable C and N isotopes and biomarkers.Quatern. Int., 2011, 240, 52-61.10.1016/j.quaint.2010.10.009Search in Google Scholar

[17] Sümegi P., Hertelendi E., Reconstruction of microenvironmentalchanges in the Kopasz Hill loess area at Tokaj (Hungary) between15 and 70 ka BP. Radiocarbon, 1998, 40, 855-863.10.1017/S0033822200018828Search in Google Scholar

[18] Sümegi P., Rudner Z.E., In situ charcoal fragments as remainsof natural wild fires in the upper Würm of the Carpathian Basin.Quatern. Int., 2001, 76–77, 165-176.10.1016/S1040-6182(00)00100-2Search in Google Scholar

[19] Schatz A.K., Scholten T., Kühn P., Paleoclimate and weatheringof the Tokaj (NE Hungary) loess-paleosol sequence: a comparisonof geochemical weathering indices and paleoclimate parameters.Clim. Past Discuss., 2014, 10, 469-507.10.5194/cpd-10-469-2014Search in Google Scholar

[20] Schatz A.-K., Buylaert J.-P., Murray A., Stevens T., Scholten T.,Establishing a luminescence chronology for a palaeosol-loessprofile at Tokaj (Hungary): A comparison of quartz OSL andpolymineral IRSL signals. Quat. Geochronol., 2012, 10, 68-74.10.1016/j.quageo.2012.02.018Search in Google Scholar

[21] Smith B.J., Wright J.S., Whalley W.B., Simulated aeolian abrasionof Pannonian sands and its implications for the origins ofHungarian loess. Earth Surf. Proc. Land., 1991, 16, 745-752.10.1002/esp.3290160808Search in Google Scholar

[22] Pécsi M., Negyedkor és löszkutatás (Loess and the Quaternary).Akadémiai Kiadó, Budapest, Hungary, 1993 (in Hungarian).Search in Google Scholar

[23] Varga G., Similarities among the Plio–Pleistocene terrestrial aeoliandust deposits in the World and in Hungary. Quatern. Int.,2011, 234, 98-108.10.1016/j.quaint.2010.09.011Search in Google Scholar

[24] Stuut, J.-B., Smalley, I., O’Hara-Dhand, K., Aeolian dust in Europe:African sources and European deposits. Quatern. Int.,2009, 198, 234-245, doi: 10.1016/j.quaint.2008.10.00710.1016/j.quaint.2008.10.007Search in Google Scholar

[25] Sebe K., Csillag G., Ruszkiczay-Rüdiger Z., Fodor L., Thamó-Bozsó E., Müller P., Braucher R., Wind erosion under cold climate:A Pleistocene periglacial mega-yardang system in CentralEurope (Western Pannonian Basin, Hungary). Geomorphology,2011, 134, 470-482.10.1016/j.geomorph.2011.08.003Search in Google Scholar

[26] Markovic S.B., Bokhorst M.P., Vandenberghe J., McCoy W.D.,Oches E.A., Hambach U., Gaudenyi T., Jovanovic M., Zöller L.,Stevens T., Machalett B., Late Pleistocene loess-palaeosol sequencesin the Vojvodina region, north Serbia. J. QuaternarySci., 2008, 23, 73-84.10.1002/jqs.1124Search in Google Scholar

[27] Rousseau D.D., Derbyshire E., Antoine P., Hatté C., LoessRecords: Europe. In: Elias S.A., Encyclopedia of Quaternary Science.Elsevier, Oxford, 2007, 1440-1456.Search in Google Scholar

[28] Antl W., The inventories of archaeoligical horizons 4 and 3 andthe loess section of Grub/Kranawetberg, a Gravettian site inLower Austria. E&G Quat. Sci. J., 2013, 62, 120-126.10.3285/eg.62.2.03Search in Google Scholar

[29] Zöller L., Richter D., Masuth S., Wunner L., Fischer M., Antl-WeiserW., Luminescence chronology of the Grub-Kranawetbergsite, Austria. E&G Quat. Sci. J., 2013, 62, 127-135.10.3285/eg.62.2.04Search in Google Scholar

[30] Rousseau D.D., Antoine P., Hatté C., Lang A., Zöller L., FontugneM., Othman D.B., Luck J.M., Moine O., Labonne M., Bentaleb I.,Jolly D., Abrupt millennial climatic changes from Nussloch (Germany)Upper Weichselian eolian records during the Last Glaciation.Quaternary Sci. Rev., 2002, 21, 1577-1582.10.1016/S0277-3791(02)00034-3Search in Google Scholar

[31] Hatté C., Antoine P., Fontugne M., Rousseau D.-D., Tisnérat-Laborde N., Zöller L., New chronology and organic matter 13Cpaleoclimatic significance of Nußloch loess sequence (RhineValley, Germany). Quatern. Int., 1999, 62, 85-91.10.1016/S1040-6182(99)00026-9Search in Google Scholar

[32] Hatté C., Guiot J., Palaeoprecipitation reconstruction by inversemodelling using the isotopic signal of loess organic matter:application to the Nußloch loess sequence (Rhine Valley, Germany).Clim. Dynam., 2005, 25, 315-327.10.1007/s00382-005-0034-3Search in Google Scholar

[33] Gocke M., Kuzyakov Y.,Wiesenberg G.L.B., Rhizoliths in loess –evidence for post-sedimentary incorporation of root-derived organicmatter in terrestrial sediments as assessed from molecularproxies. 2010, 41, 1198-1206.Search in Google Scholar

[34] Moine O., Rousseau D.-D., Antoine P., Terrestrial molluscanrecords of Weichselian Lower to Middle Pleniglacial climaticchanges from the Nussloch loess series (Rhine Valley, Germany):the impact of local factors. Boreas, 2005, 34, 363-380.10.1080/03009480510013060Search in Google Scholar

[35] Antoine P., Rousseau D.-D.,MoineO., Kunesch S., Hatté C., LangA., Tissoux H., Zöller L., Rapid and cyclic aeolian deposition duringthe Last Glacial in European loess: a high-resolution recordfrom Nussloch, Germany. Quaternary Sci. Rev., 2009, 28, 2955-2973.10.1016/j.quascirev.2009.08.001Search in Google Scholar

[36] Hill T.C., Geochemical evidence for weathering in NW Europeanloess on a sub-millennial scale during the last Ice Age. PhD thesis,University of Gloucestershire, Gloucestershire, 2005.Search in Google Scholar

[37] Antoine P., Rousseau D.-D., Zöller L., Lang A., Munaut A.-V.,Hatté C., Fontugne M., High-resolution record of the last Interglacial–glacial cycle in the Nussloch loess–palaeosol sequences,Upper Rhine Area, Germany. Quatern. Int., 2001, 76-77.10.1016/S1040-6182(00)00104-XSearch in Google Scholar

[38] Zech M., Rass S., Buggle B., Löscher M., Zöller L., Reconstructionof the late Quaternary paleoenvironments of the Nusslochloess paleosol sequence, Germany, using n-alkane biomarkers.Quaternary Res., 2012, 78, 226-235.10.1016/j.yqres.2012.05.006Search in Google Scholar

[39] Jacobsen S.B., Wasserburg G.J., Sm-Nd isotopic evolution ofchondrites. Earth Planet. Sc. Lett., 1980, 50, 139-155.10.1016/0012-821X(80)90125-9Search in Google Scholar

[40] Taylor S.R., McLennan S.M., The Continental Crust: its Compositionand Evolution. Blackwell Scientific Publications, Oxford,1985.Search in Google Scholar

[41] Kemp A.J., Hawkesworth C.J., Granitic Perspectives on the Generationand Secular Evolution of the Continental Crust. In: RudnickR.L., The Crust. Elsevier, 2003, 349-410.10.1016/B0-08-043751-6/03027-9Search in Google Scholar

[42] Feng J.-L., Zhu L.-P., Zhen X.-L., Hu Z.-G., Grain size effect on Srand Nd isotopic compositions in eolian dust: Implications fortracing dust provenance and Nd model age. Geochem. J., 2009,43, 123-131.10.2343/geochemj.1.0007Search in Google Scholar

[43] Rao W., Yang J., Chen J., Li G., Sr-Nd isotope geochemistry ofeolian dust of the arid-semiarid areas in China: Implications forloess provenance and monsoon evolution. Chinese Sci. Bull.,2006, 51, 1401-1412.10.1007/s11434-006-2008-1Search in Google Scholar

[44] DePaolo D.J., Neodymium Isotope Geochemistry: an Introduction.Springer, Berlin, Heidelberg, 1988.10.1007/978-3-642-48916-7Search in Google Scholar

[45] Svensson A., Biscaye P.E., Grousset F.E., Characterization of lateglacial continental dust in the Greenland Ice Core Project icecore. J. Geophys. Res. Atmos., 2000, 105, 4637-4656.10.1029/1999JD901093Search in Google Scholar

[46] Mikulcic Pavlakovic S., Crnjakovic M., Tibljaš D., Šoufek M.,Wacha L., Frechen M., Lackovic D., Mineralogical and geochemicalcharacteristics of Quaternary sediments from the Island ofSusak (Northern Adriatic, Croatia). Quatern. Int., 2011, 234, 32-49.10.1016/j.quaint.2010.02.005Search in Google Scholar

[47] Varga A., Újvári G., Raucsik B., Tectonic versus climatic controlon the evolution of a loess–paleosol sequence at Beremend,Hungary: an integrated approach based on paleoecological,clay mineralogical, and geochemical data. Quatern. Int.,2011, 240, 71-86.10.1016/j.quaint.2010.10.032Search in Google Scholar

[48] Kühn P., Techmer A., Weidenfeller M., Lower to middle Weichselianpedogenesis and palaeoclimate in Central Europe usingcombined micromorphology and geochemistry: the loesspaleosolsequence of Alsheim (Mainz Basin, Germany). QuaternarySci. Rev., 2013, 75, 43-58.10.1016/j.quascirev.2013.05.019Search in Google Scholar

[49] Smykatz-Kloss B., Die Lößvorkommen des Pleiser Hügellandesbei Bonn und von Neustadt/Wied sowie der Picardie:Mineralogisch-geochemische und geomorphologische Charakterisierung,Verwitterungs-Beeinflussung und Herkunft derLösse. PhD thesis, Rheinische Friedrich-Wilhelms-UniversitätBonn, Bonn, Germany, 2003 (in German).Search in Google Scholar

[50] Nehyba S., Adamová M., Faimon J., Kuchovský T., Holoubek I.,Zeman J., Modern fluvial sediment provenance and pollutanttracing: a case study from the Drevnice River Basin (easternMoravia, Czech Republic). Geol. Carpath., 2010, 61, 147-162.10.2478/v10096-010-0007-2Search in Google Scholar

[51] Schnetger B., Chemical-composition of loess from a local andworldwide view. Neues JB Miner. Monat., 1992, 1, 29-47.Search in Google Scholar

[52] Parks D.A., Rendell H.M., Thermoluminescence dating and geochemistryof loessic deposits in southeast England. J. QuaternarySci., 1992, 7, 99-107.10.1002/jqs.3390070203Search in Google Scholar

[53] Taylor S.R., McLennan S.M., McCulloch M.T., Geochemistry ofloess, continental crustal composition and crustal model ages.Geochim. Cosmochim. Ac., 1983, 47, 1897-1905.10.1016/0016-7037(83)90206-5Search in Google Scholar

[54] Lautridou J.P., Sommé J., Jamagne M., Sedimentological, mineralogicaland geochemical characteristics of the loess of North-Western France. In: Pécsi, M., Lithology and Stratigraphy ofLoess and Paleosols. Geographical Research Institute of theHungarian Academy of Science, Budapest, 1984, 121-132.Search in Google Scholar

[55] Henry P., Deloule E., Michard A., The erosion of the Alps: Nd isotopicand geochemical constraints on the sources of the peri-Alpine molasse sediments. Earth Planet. Sc. Lett., 1997, 146,627-644.10.1016/S0012-821X(96)00252-XSearch in Google Scholar

[56] Embey-Isztin A., Downes H., James D.E., Upton B.G.J., DobosiG., Ingram G.A., Harmon R.S., Scharbert H.G., The petrogenesisof Pliocene alkaline volcanic rocks from the Pannonian Basin,Eastern Central Europe. J. Petrol., 1993, 34, 317-343.10.1093/petrology/34.2.317Search in Google Scholar

[57] Schaltegger U., Abrecht J., Corfu F., The Ordovician orogeny inthe Alpine basement: constraints from geochronology and geochemistryin the Aar Massif (Central Alps). Swiss Bull. Mineral.Petrol., 2003, 83, 183-239.Search in Google Scholar

[58] Seghedi I., Downes H., Szakács A., Mason P.R.D., ThirlwallM.F., Rosu E., Pécskay Z., Márton E., Panaiotu C.,Neogene-Quaternary magmatism and geodynamics in theCarpathian–Pannonian region: a synthesis. Lithos, 2004, 72,117-146.10.1016/j.lithos.2003.08.006Search in Google Scholar

[59] Siebel W., Shang C.K., Reitter E., Rohrmüller J., Breiter K., Twodistinctive granite suites in the SW Bohemian Massif and theirrecord of emplacement: constraints from geochemistry and zircon207Pb/206Pb chronology. J. Petrol., 2008, 49, 1853-1872.10.1093/petrology/egn049Search in Google Scholar

[60] Mason P.R.D., Downes H., Thirlwall M.F., Seghedi I., Szakacs A.,Lowry D., Mattey D., Crustal assimilation as a major petrogeneticprocess in the East Carpathian Neogene and Quaternarycontinental margin arc, Romania. J. Petrol., 1996, 37, 927-959.10.1093/petrology/37.4.927Search in Google Scholar

[61] Klötzli U.S., Buda G., Skiöld T., Zircon typology, geochronologyand whole rock Sr–Nd isotope systematics of the MecsekMountaingranitoids in the Tisia Terrane (Hungary). Miner. Petrol.,2004, 81, 113-134.10.1007/s00710-003-0026-0Search in Google Scholar

[62] Drost K., Romer R.L., Linnemann U., Fatka O., Kraft P., Marek J.,Nd-Sr-Pb isotopic signatures of Neoproterozoic–Early Paleozoicsiliciclastic rocks in response to changing geotectonic regimes:A case study from the Barrandian area (BohemianMassif, CzechRepublic). Geol. S. Am. S., 2007, 423, 191-208.10.1130/2007.2423(08)Search in Google Scholar

[63] Kohút M., Nabelek P.I., Geochemical and isotopic (Sr, Nd andO) constraints on sources for Variscan granites in the WesternCarpathians - implications for crustal structure and tectonics. J.Geosci., 2008, 53, 307-322.10.3190/jgeosci.033Search in Google Scholar

[64] Gaab A.S., Janák M., Poller U., Todt W., Alpine reworking of Ordovicianprotoliths in the Western Carpathians: Geochronologicaland geochemical data on the Muráñ Gneiss Complex, Slovakia.Lithos, 2006, 87, 261-275.10.1016/j.lithos.2005.06.010Search in Google Scholar

[65] Janousek V., Gerdes A., Vrána S., Finger F., Erban V., Friedl G.,Braithwaite C.J.R., Low-pressure granulites of the Lišov Massif,Southern Bohemia: Viséan metamorphism of Late Devonianplutonic arc rocks. J. Petrol., 2006, 47, 705-744.10.1093/petrology/egi091Search in Google Scholar

[66] Baumann A., Hofmann R., Strontium isotope systematics of hydrothermalvein minerals in deposits of West Germany. Geol.Rundsch., 1988, 77, 747-762.10.1007/BF01830181Search in Google Scholar

[67] Muhs D.R., Budahn J.R., Geochemical evidence for the origin oflate Quaternary loess in central Alaska. Can. J. Earth Sci., 2006,43, 323-337.10.1139/e05-115Search in Google Scholar

[68] Salminen R., Batista M.J., Bidovec M., Demetriades A., De VivoB., De VosW., Duris M., Gilucis A., Gregorauskiene V., Halamic J.,Heitzmann P., Lima A., Jordan G., Klaver G., Klein P., Lis J., LocuturaJ.,Marsina K.,Mazreku A., O’Connor P. J., Olsson S.Å., OttesenR.-T., Petersell V., Plant J.A., Reeder S., Salpeteur I., SandströmH., Siewers U., Steenfelt A., Tarvainen T., Geochemical Atlasof Europe. Part 1: Background Information, Methodology andMaps. Geological Survey of Finland, Espoo 2005.Search in Google Scholar

[69] Tricca A., Stille P., Steinmann M., Kiefel B., Samuel J., EikenbergJ., Rare earth elements and Sr and Nd isotopic compositions ofdissolved and suspended loads from small river systems in theVosges mountains (France), the river Rhine and groundwater.Chem. Geol., 1999, 160, 139-158.10.1016/S0009-2541(99)00065-0Search in Google Scholar

[70] Probst A., El Gh’mari A., Aubert D., Fritz B., McNutt, R., Strontiumas a tracer of weathering processes in a silicate catchmentpolluted by acid atmospheric inputs, Strengbach, France.Chem. Geol., 2000, 170, 203-219.10.1016/S0009-2541(99)00248-XSearch in Google Scholar

[71] Rudnick R.L., Gao S., Composition of the Continental Crust. In:Holland H.D. and Turekian K.K., Treatise on Geochemistry. Pergamon,Oxford, 2003, 1-64.10.1016/B0-08-043751-6/03016-4Search in Google Scholar

[72] Kiss P., Gméling K., Molnár F., Pécskay Z., Geochemistry of Sarmatianvolcanic rocks in the Tokaj Mts (NE Hungary) and theirrelationship to hydrothermal mineralization. C. Eu. Geol., 2010,53, 377-403.10.1556/CEuGeol.53.2010.4.3Search in Google Scholar

[73] Vdacný M., Vozárová A., Vozár J., Geochemistry of the Permiansandstones from the Malužiná Formation in the Malé KarpatyMts (Hronic Unit, Western Carpathians, Slovakia): implications for source-area weathering, provenance and tectonic setting.Geol. Carpath., 2013, 64, 23-38.10.2478/geoca-2013-0002Search in Google Scholar

[74] Varga A., Szakmány G., Árgyelán T., Józsa S., Raucsik B., MáthéZ., Complex examination of the Upper Paleozoic siliciclasticrocks from southern Transdanubia, SW Hungary - Mineralogical,petrographic, and geochemical study. Geol. S. Am. S., 2007,420, 221-240.10.1130/2006.2420(14)Search in Google Scholar

[75] Drost K., Linnemann U., McNaughton N., Fatka O., Kraft P.,Gehmlich M., Tonk C., Marek J., New data on the Neoproterozoic– Cambrian geotectonic setting of the Teplá-Barrandianvolcano-sedimentary successions: geochemistry, U-Pb zirconages, and provenance (Bohemian Massif, Czech Republic). Int.J. Earth Sci., 2004, 93, 742-757.10.1007/s00531-004-0416-5Search in Google Scholar

[76] Jurje M., Ionescu C., Hoeck V., Kovacs M., Geochemistry of Neogenequartz andesites from the Oas and Gutâi Mountains, EasternCarpathians (Romania): a complex magma genesis. Miner.Petrol., 2013, 108(1), 1-20.10.1007/s00710-013-0282-6Search in Google Scholar

[77] von Eynatten H., Petrography and chemistry of sandstonesfrom the Swiss Molasse Basin: an archive of the Oligocene toMiocene evolution of the Central Alps. Sedimentology, 2003,50, 703-724.10.1046/j.1365-3091.2003.00571.xSearch in Google Scholar

[78] Biscaye P.E., Grousset F.E., Revel M., Van der Gaast S., ZielinskiG.A., Vaars A., Kukla G., Asian provenance of glacial dust (stage2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland.J. Geophys. Res. Atmos., 1997, 102, 26765-26781.10.1029/97JC01249Search in Google Scholar

[79] Grousset F.E., Rognon P., Coudé-Gaussen G., Pédemay P., Originsof peri-Saharan dust deposits traced by their Nd and Sr isotopiccomposition. Palaeogr. Palaeocl., 1992, 93, 203-212.10.1016/0031-0182(92)90097-OSearch in Google Scholar

[80] Bory A.J.M., Biscaye P.E., Svensson A., Grousset F.E., Seasonalvariability in the origin of recent atmospheric mineral dust atNorthGRIP, Greenland. Earth Planet. Sc. Lett., 2002, 196, 123-134.10.1016/S0012-821X(01)00609-4Search in Google Scholar

[81] Broska I., Williams C.T., Uher P., Konecný P., Leichmann J.,The geochemistry of phosphorus in different granite suites ofthe Western Carpathians, Slovakia: the role of apatite and Pbearingfeldspar. Chem. Geol., 2004, 1-2, 1-15.10.1016/j.chemgeo.2003.09.004Search in Google Scholar

Received: 2014-07-08
Accepted: 2014-12-23
Published Online: 2015-11-19

©2015 A.-K. Schatz et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 27.2.2024 from https://www.degruyter.com/document/doi/10.1515/geo-2015-0048/html
Scroll to top button