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Abstract: In the petroleum industry, drilling optimization
involves the selection of operating conditions for achiev-
ing the desired depth with the minimum expenditure
while requirements of personal safety, environment pro-
tection, adequate information of penetrated formations
and productivity are fulfilled. Since drilling optimization
is highly dependent on the rate of penetration (ROP), es-
timation of this parameter is of great importance during
well planning. In this research, a novel approach called
‘optimized support vector regression’ is employed formak-
ing a formulation between input variables and ROP. Algo-
rithms used for optimizing the support vector regression
are the genetic algorithm (GA) and the cuckoo search al-
gorithm (CS). Optimization implementation improved the
support vector regression performance by virtue of select-
ing proper values for its parameters. In order to evaluate
the ability of optimization algorithms in enhancing SVR
performance, their results were compared to the hybrid
of pattern search and grid search (HPG) which is conven-
tionally employed for optimizing SVR. The results demon-
strated that the CS algorithm achieved further improve-
ment on prediction accuracy of SVR compared to the GA
and HPG as well. Moreover, the predictive model derived
from back propagation neural network (BPNN), which is
the traditional approach for estimating ROP, is selected
for comparisons with CSSVR. The comparative results re-
vealed the superiority of CSSVR. This study inferred that
CSSVR is a viable option for precise estimation of ROP.
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1 Introduction
Drilling optimization is the practice of adjusting the op-
erating conditions with a view to reaching the anticipated
depthwith least possible costwhile necessities of personal
safety environment, protection, adequate information of
penetrated formations and productivity are considered [1].
Rate of penetration (ROP) is one of the paramount pa-
rameters which must be considered in drilling optimiza-
tion. Clearly, a predictive approach to estimating ROP from
available data has the potential to improving drilling opti-
mization implementation. Recently, Bourgoyne andYoung
(1986) presented a mathematical based model for estimat-
ing of ROP. This model is a widely accepted model which
has the virtue of simplicity [2]. Although this model is ad-
vantageous, it possess some shortcomings as it cannot es-
timate the value of rate of penetration with satisfactory
accuracy. Over the last decades, the development of in-
telligence based approaches for modeling of petroleum-
related phenomena has been an area of active research [3–
7]. Emergence of these methods has facilitated significant
progress in modeling of drilling parameters. In this area,
a number of investigators used neural networks as a com-
putational approach to modeling of the ROP [8–16]. More-
over, Bahari et al (2009) renovated the Bourgoyne-Young
penetration ratemodel through employment of the genetic
algorithm (GA) to extract the optimal values of the involved
coefficient in their equation [17]. Although the aforemen-
tioned models have practical results, the quest for the su-
perior approach always exists. In this study, a robust in-
telligence model based on the support vector regression
(SVR) is proposed for prediction of the ROP. Due to high
dependency of the SVR performance on fine adjustment of
its parameters, employing a potent optimization strategy
for this implementation is crucial. Traditionally, a hybrid
of pattern search and grid (HPG) search is used for achiev-
ing this objective [18–23]. Use of this method is very time
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consuming and therefore it is essential to employ a potent
optimization tool for finding the SVR parameters [24]. In
current the study, two optimization tools, namely genetic
algorithm and cuckoo search algorithm are adopted to im-
prove the SVR performance.

2 Modeling description

2.1 Support vector regression

SVR is a new estimation technique based on the principal
of statistical learning theory [25]. The algorithm estimates
unknown values using an optimal linear regressionmodel
in a new feature space which is defined by mapping input
data from the original space into a higher m-dimensional
space.

Consider a given training data in a p-dimensional in-
put vector and one dimensional target vector. The objec-
tive is to formulate between input and output data in the
following form [25]:

f (x) = wTφ(x) + b (1)

Where φ is a nonlinear mapping function and w and b are
the weighting vector and bias term of the regression equa-
tion, respectively. The optimal w and b are determined by
minimizing the following risk function using slack vari-
ablesas ξi, ξ *i :

R(f ) = 1
2 ||w||2 + c

l∑︁
i=1

(︁
ξiξ *i

)︁
(2)

Subjected to:⎧⎪⎪⎨⎪⎪⎩
di − wTφ(xi) − b ≤ ε + ξi , i = 1, . . . , l
wTφ(xi) + b − di ≤ ε + ξ *i , i = 1, . . . , l
ξi , ξ *i ≥ 0, i = 1, . . . , l

(3)

Here, C is a constant parameterwhich defines the trade-off
between flatness and estimation error. Quality of approxi-
mation is measured by tube in the loss function. Eq. (3) is
solved based on foundation of dual problem formulation
and defining Lagrange multipliers, αi, α*i ∈ [0, C], and ul-
timately, the following solution is obtained [25]:

f (x) =
l∑︁
i=1

(︁
αi − α*i

)︁
k
(︁
xi − x*i

)︁
+ b (4)

k
(︀
xi − x*i

)︀
is the called kernel function. In this study, the

radial basis function (RBF) is used as a kernel function:

k
(︁
xi − x*i

)︁
= exp

(︂
−𝛾

⃒⃒⃒⃒⃒⃒
xi − x*i

⃒⃒⃒⃒⃒⃒2)︂
(5)

According to the above brief introduction of the SVR,
C, 𝛾 and ε are the three main parameters of the SVR
method which must be selected during an optimization
technique. The accuracy of the SVR model is highly de-
pendent upon the parameter selection. Traditionally, a hy-
brid of grid search and pattern search were used as an
optimization method in many published research studies
of the SVR application. In this method, optimization initi-
ates with grid search trying to achieve a region close to the
global optimumpoint. Next, a pattern search is conducted
over the narrowed search range surrounding the best point
found by the grid search. This combination eliminates the
defects of individual employment of grid search as well as
pattern search in finding SVR parameters. However, use of
HPG is time consuming and also insufficiently accurate in
determining the SVR parameters [18–23]. Owing to these
restrictions on HPG, it is desirable to introduce the most
potent optimization tool for SVR formulation, in order to
calculate its parameters are desired. In this study two po-
tent optimization algorithms namely the cuckoo search al-
gorithm (CS) and the genetic algorithm (GA) are introduced
in order to select the best SVR parameters.

2.2 Genetic algorithm

GA is an evolutionary algorithm for optimization of the
problems inspired by biological evolution based on nat-
ural selection theory. The algorithm is started by gener-
ating a random population of a set of candidate solution
called "chromosomes". Each solution is evaluated based
on a fitness function (the function that its global optimum
is meant to explore) [26]. Based on fitness score of "chro-
mosomes", they are ranked and then highly-ranked "chro-
mosomes" are selected to be used in the next generation.
This process is repeated until a stop condition is satisfied.
In order to discover a new solution during each algorithm’s
iteration, three main processes are accomplished. First,
parents that contribute to the next generation are chosen
with a selection operation. Second, a crossover operation
produces children from parents. Finally, some gene val-
ues of "chromosomes" alter in mutation. The mutation in-
creases the performance of the algorithm to a find solution
and causes the GA to converge to a global (not local) opti-
mum.

2.3 Cuckoo search algorithm

Cuckoo search (CS) is a new meta-heuristic algo-
rithm based on the parasitic behavior of a bird called
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Figure 1: General Pseudo code of cuckoo search algorithm via Lévy
flight [27].

"cuckoo" [27]. Some cuckoo types lay their "eggs" in the
"nests" of other host birds. These "eggs" can be found
by host birds and annihilated or remain in the host nest.
Briefly, the CS can be summarized with following three
idealizing rules [27]:

– Each "cuckoo" selects a "nest", randomly and lays
one "egg" at a time in it.

– The best "nests" with optimal "eggs" will transfer to
the next iteration.

– Thenumber of host "nests" is fixed, and thehost bird
discovers, with a probability, pa ∈ (0, 1) the "egg"
laid by a "cuckoo". In this case, the host bird can ei-
ther throw these alien "eggs" away or simply aban-
don the "nest" and build a completely newnest else-
where.

Based on above rules, the standard CS algorithm can
be explained with pseudo code of Figure 1. Using "Lévy
flight" is a novel way to characterize the CS for searching a
new "nest". "Lévy" refers to the name of a French mathe-
matician who described a model for the flight behavior of
manyanimals and insects. YangandDeb (2009) found that
random walk style search by "Lévy flight" has a high per-
formance related to a simple random walk in the CS [27].

A "cuckoo egg" represents a solution and a new solu-
tion of ith cuckoo is generated with a "Lévy flight" as:

xt+1i = xti + α ⊕ Lvy(s, λ), 1 < λ ≤ 3 (6)

where α is the step size scaling factor with a positive value.
The sign of product ⊕ shows entrywise multiplications,
and s is step size drawn from a "Lévy" distribution and can
be calculated by [28]:

s = u
|v|1/β

(7)

Here, u and v are drawn from normal distribution as:

u ∼ N
(︁
0, σ2u

)︁
, v ∼ N

(︁
0, σ2v

)︁
(8)

where:

σ2u =
{︂
Γ(1 + β) sin(πβ/2)
Γ[(1 + β)/2]β2(β−1)/2

}︂1/β
, σ2v = 1 (9)

Where Γ refers to gamma function and β is an index de-
fined by user.

However there are some similarities between CS and
other nature-inspired optimization algorithms such as the
genetic algorithm (GA), and also there are some main dif-
ferences between them.More details about CS and its com-
parison with GA can be found in several papers [27–29]. In
summary, it can be expressed that the main advantage of
CS over the GA, is the application of Lévy flight for enhanc-
ing the exploration strategy. Furthermore, the number of
parameters for regulating the CS is less than the GA and
therefore it potentially enables CS to be more adaptable
in optimization problems. Also, the CS has shown great
performance to achieve better global optima in many en-
gineering optimization problems [30–33].

2.4 Artificial neural network

Artificial neural networks (ANNs) are popular intelligence
learning algorithms inspired by biological neural net-
works. One of their main applications is the approxima-
tion function which is in order to predict unknown values.
A common type of ANN is known as back propagation neu-
ral network (BPNN). This network consists of three layers,
an input layer, a hidden layer and an output layer. The in-
put data are fed into input layer and then they pass on
to the hidden layer neurons after multiplying by a weight
factor and adding a bias term. In the hidden and output
layers, a transfer function is described to let the network
learn nonlinear relationships between input and output
data. During the learning network, weights and bias are
updated and calculation and back- propagation of the er-
ror occur to obtain the best fitness function. Details of the
back-propagationalgorithmandANNsare thoroughlydoc-
umented in the literature [34].

3 Data space and inputs selection
In order to construct a potentmodel for predicting the ROP
values, a datasetwas provided fromawide geographic dis-
tribution in the Persian Gulf. For achieving this essential
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Figure 2: The regional location of investigated fields of this study in
the Persian Gulf.

Table 1: Formation description of this study.

Main lithology Code
Sea bed and cement 0

Sand Stone 1
Clay stone 2

Marl 3
Carbonate rocks 4
Evaporate rocks 5

objective, dataset is gathered randomly from daily drilling
reports (DDR) of 18 development wells which have been
drilled in four Iranian oil fields in the southwest of the Per-
sian Gulf. Figure 2 displays a location map of investigated
field of this study. There are many parameters that influ-
ence the drilling rate including mud properties, drilling
and bit parameter, lithology etc. However, only the main
parameters that are reported in the DDR are used in this
study. The input parameters of this study includemud vis-
cosity, mud weight (MW), pump rate, pump pressure, an-
gle ofwell deviation, rotary speed,weight onbit (WOB), in-
terval drilled, formation lithology, bit size and tooth wear.
Formation, bit size and bit tooth wear are discontinuous
parameters and the other data are continuous. Accord-
ing to the documents of the International Association of
Drilling Contractors (IADC), the bit tooth wear is a number
scaled from 0 to 8 which refers to the condition of the cut-
ting structures of the bit. No loss of the cutting structure is
described by zero and complete loss is eight. The bit size is
varied from 6 1/8" to 26". Lithology is defined by a series of
code numbers from 0 to 5. Table 1 explains the used lithol-

ogy decryption of this study as per main lithology which
presented in the cutting samples. For example when code
3 is used for lithology in this scale, it means most of the
drilled cutting samples are marl; however, there are some
proportions of other rock types such as anhydrite etc. Ta-
ble 2 presents a statistical description of input and output
data. In total there are 193 data samples and these are di-
vided into two subsets including training (80%) and test
data (20%). In order to increase the performance of the
model used, all data were normalized linearly in a range
of [-1, 1] and after modeling, results were back normalized
into the original scale. The normalization removes differ-
ent units of measurements from data and so, reduces con-
fusion around the model.

4 Results and discussion
In this study, an epsilon-SVR is used for predicting theROP
values from DDR’s parameters. The constructed models
are evaluated based on statistical criteria which are math-
ematically defined in Table 3. For training the SVR, a 4-
fold cross validation strategy is used. Therefore, training
data was broken into four equal sized subsets (folds), ran-
domly. Three subsets are used in the training state and the
remaining subset is used as validation data. The training
procedure is repeated four times and all validation sub-
sets are used at least once for validation. The performance
is described by mean square error (MSE) between output
and target data. As mentioned above, two optimization al-
gorithms, namely the cuckoo search algorithm and the ge-
netic algorithm are used for finding the appropriate value
of SVR parameters.

In the first stage, the GA algorithm is imbedded in the
SVR formulation in order to improve it and find best pa-
rameters of the SVR including C, 𝛾 and ε. The result with
minimumMSE of cross validation has a smaller cost value
in the GA and thus, it has a better chance to obtain high
quality results in the test state. Finally, the results from the
subsets with optimized parameters were combined with
others to produce a single approximation. The constraints
for regulating the GA are presented in Table 4. Figure 3
depicts the optimal and average fitness values versus the
GA iterations. These figures demonstrate that no signifi-
cant progress is achieved after 20 and 75 iterations for the
best and average fitness values, respectively. In the second
stage, the CS is coupled with SVR for optimization. Regu-
lation parameters for running the CSSVR are expressed in
Table 5. The best and average cost values of the CSSVR are
shown in Figure 4. According this figure, it is obvious that
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Figure 3:Minimum and mean fitness values of the genetic algo-
rithm.

Figure 4: Cost evaluation during the cuckoo search process.

no noteworthy improvement is observed after 13 and 65 it-
erations for the best and average fitness values. As it is ob-
vious from Figure 3 and 4, the GA is slower than the CS on
the convergence rate. Theoptimal values obtained through
the CS and GA for 𝛾, C and ε are tabulated in Table 6.

In order to evaluate the capability of the proposed
model, the results of the CSSVR and GASVR were com-
pared with other models. The first model selected for com-
parison is the SVR models that used an optimized method
of hybrid grid search and pattern search. This model was
selected owing to its common use in the SVR framework
for determining the values of SVR parameters. The sec-
ond model is a back propagation neural network. The
main reason for selecting this model is its successful per-
formance in modeling of ROP which carried out in pre-
vious studies [8–16]. Parameters for regulating the run-
ning of the BPNN are expressed in Table 7. The cross-plots
between predicted value and measure value for BPNN,
HPGSVR, GASVR and CSSVR are shown in Figure 5. Also,
Table 8 shows the error analysis of CSSVR based on sta-
tistical criteria viz. correlation coefficient (R), root mean
square error (RMSE), and absolute average relative error

(AARE). Figure 6 and 7 show the comparison between
GASVR and CSSVRmodel results and corresponding mea-
sured ROP value versus sample number for training data
and test data, respectively. The comparative performance
among all various methods using the concept of RMSE
and R, is illustrated in Figure 8. According to results ob-
tained, all the SVR methods have better results related to
the BPNN. Among the SVR methods, evolutionary algo-
rithms create more improvement in the performance of
the SVR. The results of CS and GA for SVR optimization
are very close to each other, however CSSVR is more suc-
cessful than GASVR. As is evident from the results, the
CSSVR decreases the RMSE of estimation up to 1.4089
(and AARE = 0.3437) which corresponds to an R value of
0.9133 for test data. Finally, cumulative distributive func-
tions (CDF) are estimated for the error between measured
and predicted ROP of the test data for all methods. In this
analysis, error is the difference between the target and out-
put data. The estimated CDF values of the errors are plot-
ted in Figure 9. According to the results presented in this
figure, utilizing the CSSVR decreases the standard devia-
tion (Std) of error values and the proposed model has low
error distribution related to other usedmethods. As seen in
aforementioned figures and table, the CSSVR can estimate
the ROP with better accuracy.

5 Conclusion
ROP is one of the most critical parameters during drilling
optimization practice. In this study, an expert system
called support vector regression, improved with an opti-
mization strategy in order to predict the ROP from drilling
parameters. TheGA andCS are the optimization tools used
for achieving the correct value of SVR free parameters. The
following results are obtained during this study:

1. The GA and CS algorithms are potent tools for im-
proving the performance of support vector regres-
sion.

2. Comparisons between performances of optimiza-
tion tools indicate the superiority of CS in finding
accurate values of SVR parameters.

3. Optimized SVR has better accuracy and robustness
in prediction of ROP compared to BPNN.

4. Optimized SVR can be used as a practicable method
for the prediction of ROP during drilling optimiza-
tion implementation.
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Table 2: Statistics description of input and output dataset.

Parameter (continues) Min Max Average
Viscosity (sec) 25 78 47.69

MW (pcf) 63 140 78.75
Pump rate (GPM) 100 1200 585.59

Pump pressure (psi) 100 3000 1857.76
Well deviation (degree) 0 90 49.33
Rotary speed (RPM) 0 200 106.28

WOB (klbf) 0 60 21.57
Interval drilled (m) 1 690 184.29

ROP (m/hr) 0.25 12.45 4.19

Parameter (discontinuous) Min Max Mode
Formation 0 5 3
Bit size (in) 6 1/8 26 8 1/2

Bit tooth wear 0 8 1

Figure 5: Correlation coeflcient between measured and predicted ROP for training data and test data using (a) BPNN, (b) HPGSVR, (c)
GASVR and (d) CSSVR.
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