Abstract
The studied rock samples belong to the classic1615–1645 Ma Wiborg Rapakivi granite terrane of southeasternFinland. Geochemical studies show that the rapakivigranites and associated rocks form metaluminousto peraluminous A-type granites and plot in the "withinplate granites (WPG)" field on the tectonic discriminate diagramsfrom the Onkamaa, Suomenniemi and Luumäki.The rapakivi granite displays enrichment of light overheavy REE (LREE/HREE = 2-34) and usually negative Euanomalies (Eu/Eu* = 0.01 - 1.4). Enrichment in REE in somestudied samples is confined to highly fractionated portionsof the Rapakivi granite. Fractional crystallization ofthe evolving fluorite-rich peraluminous granitic magmawas accompanied, particularly at later stages by fluid fractionation,which plays an important role in the genesis ofthe REE-mineralization.The studied rapakivi granites host REE-minerals includingmonazite-(Ce), allanite (Ce), bastnäsite (Ce), xenotime,thorite and REE-bearing mineral apatite. Monazite and allaniteare the most important REE carriers in the studiedgranites and these minerals are strongly enriched in theLREE.Monazites are hosted in apatite, quartz, plagioclase,K-feldspar, and biotite. Grain size of monazite is variableranging from 50 to >100 μm.Monazite contains 48-68 wt%REE2O3, 24.3-29.3 wt% P2O5 and low Th<1.5 wt%ThO2. TheY, REE, U, Th-bearing minerals are not commonly associatedwith the primary minerals except for Th-bearingminerals, which occur as silicates (e.g. thorite, ThSiO4);and/or replace other elements in the structure of some accessorymineral, especially xenotime, brabantite, zircon,and apatite.Electron probe microanalysis (EPMA) provides an indicationof solid solution series between thorite-xenotimezircon,which are related to hydrothermal solutions enrichedin REE, Y, P, U, F, and Zr.
References
[1] Rämö O.T., Haapala I., Rapakivi granites. In: Lehtinen M., NurmiRA., Rämö O.T. (Eds.), Precambrian Geology of Finland - Key tothe Evolution of the Fennoscandian Shield. Elsevier B.V., Amsterdam,2005, 533-562.10.1016/S0166-2635(05)80013-1Search in Google Scholar
[2] Haapala I., Petrography and geochemistry of the Eurajoki stock;a rapakivi-granite complex with greisens-type mineralization insouthwestern Finland, Geol. Surv. Finl. Bull., 1977a, 286, 128.Search in Google Scholar
[3] Sahama Th.G. On the chemistry of the east Fennoscandian rapakivigranites. Bull. Comm. géol. Finlande, 1945, 136, 15-67.Search in Google Scholar
[4] Simonen A., Vorma A., Amphibole and biotite from rapakivi.Bull. Comm. géol. Finlande, 1969, 238, 28.Search in Google Scholar
[5] Vorma A., Alkali feldspars of the Wiborg rapakivi massif insoutheastern Finland. Bull. Comm. Geol. Finland, 1971, 246, 72.Search in Google Scholar
[6] Vorma A., on the petrochemistry of rapakivi granites with specialreference to the Laitila massif, southwestern Finland. Geol.Surv. Finl. Bull., 1976, 285, 98.Search in Google Scholar
[7] Ehlers C., Bergman L., Structure and mechanism of intrusionof two postorogenic granite massifs, southwestern Finland.In: Kröner A., Greiling R. (Eds.) Precambrian Tectonics Illustrated.E. Schweizerbart’sche verlagsbuchhandlung, Germany,Stuttgart, 1984, 173-190.Search in Google Scholar
[8] Bergman L., Structure and mechanism of intrusion of postorogenicgranites in the archipelago of southwestern Finland. Acta Acad. Abo. Ser. B, 1986, 46, 74.Search in Google Scholar
[9] Haapala I., Ojanperä P., Genthelvite-bearing greisens in southernFinland, Geol. Surv. Finl. Bull., 1972, 259, 22.Search in Google Scholar
[10] Haapala I., The controls of tin and related mineralization in therapakivi-granite areas of south-eastern Fennoscandia. GeologicalSociety in Stockholm Consultation, 1977b, 99, 130-142.10.1080/11035897709455007Search in Google Scholar
[11] Edén P., specialized topaz-bearing rapakivi granite and associatedmineralized greisens in the Ahvenisto complex, SE Finland.Bull. Geol. Soc. Finland, 1991, 63, 25-40.10.17741/bgsf/63.1.003Search in Google Scholar
[12] Cook N.J., Sundblad K., Valkama M., Nygård R., Ciobanu C.L.,Danyushevsky L., Indium mineralization in A-type granites insoutheastern Finland: Insights into mineralogy and partitioningbetween coexisting minerals. Chem. Geol., 2011, 284, 62-73.10.1016/j.chemgeo.2011.02.006Search in Google Scholar
[13] Lukkari S., Thomas R., Haapala I., Crystallization of theKymi topaz granite stock within the Wiborg Rapakivi granitebatholith, Finland: evidence from melt inclusions, Can. Mineral.,2009, 47(6), 1359-1374.10.3749/canmin.47.6.1359Search in Google Scholar
[14] Amelin Y., Belyaev A.M., Larin A., Neymark L., Stepanov K.,Salmi batholith and Pitkaranta ore field in Soviet Karelia. Geol.Surv. Finland, Guide, 1991, 33, 57. Helsinki.Search in Google Scholar
[15] Frost B.R., Arculus R.J., Barnes C.G., Collins W.J., Ellis D.J., FrostC.D., A geochemical classification of granitic rocks. J. Petrol.,2001, 42, 2033-2048.10.1093/petrology/42.11.2033Search in Google Scholar
[16] Maniar P.D., Piccoli P.M., Tectonic discrimination of granitoids.Geol. Soc. Am. Bull., 1989, 101, 635-643.10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2Search in Google Scholar
[17] Whalen J.B., Currie K.L., Chappell B.W., S-type granites: geochemicalcharacteristics, discrimination and petrogenesis.Contrib. Mineral. Petr., 1987, 95, 407-419.10.1007/BF00402202Search in Google Scholar
[18] Sylvester P.L., Post-collisional alkaline granites. J. Geol., 1989,97, 261-280.10.1086/629302Search in Google Scholar
[19] Pearce J.A., Harris N.B.W., Tindle A.G., Trace element discriminationdiagrams for the tectonic interpretation of granitic rocks. J.Petrol., 1984, 25, 956-983.10.1093/petrology/25.4.956Search in Google Scholar
[20] Hanson G.N. The application of trace elements to the petrogenesisof igneous rocks of granitic composition. Earth Planet. Sci.Lett., 1978, 38, 26-43.10.1016/0012-821X(78)90124-3Search in Google Scholar
[21] Jefferies N. L., The distribution of the rare earth elements withinthe Carnmeneltis Pluton, Cornwall. Mineral. Mag., 1984, 49,495-504.10.1180/minmag.1985.049.353.02Search in Google Scholar
[22] Boynton W.V., Geochemistry of the rare earth elements: meteoritestudies. In: Henderson P. (Ed), Rare Earth Element Geochemistry,Elsevier, Amsterdam, 1984, 63-114.Search in Google Scholar
[23] Gratz R., HeinrichW., Monazite-xenotime thermobarometry: experimentalcalibration of the miscibility gap in the binary systemCePO4-YPO4. Am. Mineral., 1997, 82, 772-780.10.2138/am-1997-7-816Search in Google Scholar
[24] Haapala I., Magmatic and Postmagmatic Processes in TinmineralizedGranites: Topaz-bearing Leuco granite in the EurajokiRapakivi Granite Stock, Finland, J. Petrol., 1997, 38(12),1645-1659.10.1093/petroj/38.12.1645Search in Google Scholar
[25] Hoskin P.W.O., Kinny P.D., Wyborn D., Chappell B.W., Identifyingaccessory mineral saturation during differentiation in granitoidmagmas:an integrated approach, J. Petrol., 2000, 41, 1365-1396.10.1093/petrology/41.9.1365Search in Google Scholar
[26] Heinonen A.P., Andersen T., Rämö O.T., Re-evaluation of RapakiviPetrogenesis: Source Constraints from the Hf IsotopeComposition of Zircon in the Rapakivi Granites and AssociatedMafic Rocks of Southern Finland, J. Petrol., 2010, 51, 1687-1709.10.1093/petrology/egq035Search in Google Scholar
[27] Lahti S., Suominen V., Occurrence, crystallography and chemistryof the fluocerite- bastnäsite-cerianite intergrowth from theFjälskär, southwestern Finland. Bull. Geol. Soc. Fin., 1988, 60,45-53.10.17741/bgsf/60.1.003Search in Google Scholar
[28] Andersson U.B., Förster H.J., Mineralogical-geochemical evolutionand the formation of REE fluorocarbonates in a silicic rapakivigranite system; the Rödö complex, central Sweden. J.Czech Geol. Soc., 2003, 48, 3-15.Search in Google Scholar
[29] Franz G., Andrehs G., Rhede D., Crystal chemistry of monaziteand xenotime from Saxothuringian-Moldanubianm etapelites,NE Bavaria, Germany. Eur. J. Mineral., 1996, 8, 1097-1118.10.1127/ejm/8/5/1097Search in Google Scholar
©2015 Thair Al-Ani
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.