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Abstract:Thepaper presents the evaluationof engineering

geological laboratory test results of core drillings along the

new metro line (line 4) in Budapest by using a multivari-

ate data analysis. A data set of 30 core drillings with a to-

tal coring length of over 1500 meters was studied. Of the

eleven engineering geological parameters considered in

this study, only the �ve most reliable (void ratio, dry bulk

density, angle of internal friction, cohesion and compres-

sive strength) representing 1260 data points were used for

multivariate (cluster and discriminant) analyses. To test

the results of the cluster analysis discriminant analysis

was used. The results suggest that the use of multivari-

ate analyses allows the identi�cation of di�erent groups

of sediments even when the data sets are overlapping and

contain several uncertainties. The tests also prove that the

use of thesemethods for seemingly very scattered parame-

ters is crucial in obtaining reliable engineering geological

data for design.

Keywords: cluster analysis; sedimentary rocks; density;

cohesion; angle of internal friction

1 Introduction
Multivariate analysis is an important tool in data manage-

ment and it has been widely used in managing and inter-

preting geochemical characterisation of groundwater [1, 2]

in geochemical characterization of soils science [3, 4]. Wa-
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ter quality changes of surface waters [5, 6] and groundwa-

ter resources [7] were also studied recently by using this

tool. The broad application also includes the ecology of

lacustrine environment [8] and dry land palaeoenviron-

ments, such as paleosols in loess [9, 10]. More recently

increasing number of publications appears in hydrogeo-

chemical and water quality research [11–13]. Thus, the use

of multivariatemethods requires large data sets and there-

fore its application in engineering geology is less com-

mon, since even for large constructionprojects thenumber

of laboratory analyses usually provides only a relatively

limited amount of data in statistical terms. At the same

time, it has been known for some time that data analy-

ses are useful tools in engineering geology [14]. More re-

cent studies have demonstrated the applicability of mul-

tivariate data analyses in various �elds of engineering ge-

ology such as rock engineering [15, 16], soil liquefaction

[17], landslide susceptibility analyses [18–20] and even in

investigating the correlation between claymineralogy and

shear strength of soils [21]. The present paper attempts to

gain new insights into the problem of engineering geologi-

cal data analysis by using a data set of mechanical param-

eters obtained from laboratory tests during the construc-

tion of a new metro line in Budapest. The data set was

obtained from 30 core drillings (2041 m of cores in total)

with 9554 data points. Each data point represents the re-

sult of a laboratory test of 11 di�erent engineering geologi-

cal parameters. Thedatawasdigitized, andafter screening

the data sources it was found that from the above men-

tioned nearly ten thousand data points only 252 samples

had been tested for the required amount of parameters,

thus allowing the use of 1260 data points for multivariate

data analyses. Although a large number of data were pro-

duced during laboratory tests a careful selection of data is

required to carry out cluster analyses. Themain aim of this

research was to demonstrate the use of multivariate data

analyses in the identi�cation of di�erent lithotypes based

on their engineering geological parameters and to classify

the sediments according to their physical parameters.
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2 Geological setting

Budapest is characterized by morphology controlled ge-

ological setting, with low laying �ats mostly covered by

Miocene sediments on the eastern side of river Danube,

and an elevated side with Triassic-Eocene-Oligo-Miocene

sediments on the western �anks of the river [22]. The new

metro line (line no 4) in Budapest can be divided into three

sections on the basis of their di�ering geological structure:

i) the �rst section on the Buda side is characterized by

Oligocene highly consolidated clay layers, ii) the Danube

crossing part, which is intersected by faults and includes

karsti�edTriassic dolomitehorsts and iii) thePest side that

has been cut into various sediments having di�erent con-

sistency and engineering geological properties [23]. The

typical sediment of the �rst section belongs to the Kiscell

Clay Formation. It includes thick-bedded, grey to bluish

grey pyrite-rich clay with minor carbonate and mica con-

tent. The upper part of the clay is weathered and show

signs of disintegration [24]. The clay forms a relatively im-

permeable boundary; however some faults serve as con-

duits. The cover beds contain alluvial sand and sandy

gravel of Quaternary age. The topmost part is character-

ized by anthropogenic land�ll. The Danube crossing part

forms a typical asymmetric horst that is intersected byNW-

SE faults. The tunnel was cut here into an Oligocene Clay

(Tard Clay Formation). This laminated dark grey clay is in

a tectonic contact with a sandy sequence that forms part

of a Late Oligocene - Early Miocene sequence. The metro

line on the Pest side intersects predominantly Miocene

sediments, with minor amount of Oligocene deposits (Fig-

ure 1). The Miocene sequence shows a great deal of litho-

logical variety, which is covered by Quaternary river de-

posits, consisting of sandy and gravelly sediments. From

the riverbank to Kálvin Square clay, siltstone, sandy clay,

and weakly cemented sandstone are found (Figure 1). Tu-

faceous beds represent the “middle tu� horizon” [25]. Ben-

tonitic clays are also very commonly found as widespread

layers, intercalations or lenticular bodies. The area of

Rákóczi Square metro station is covered by variegated silt-

sone, which encompasses bentonitic clays and lenticu-

lar sand bodies [25, 26]. Previous studies [27] suggest the

presence of faults that intersects the siltstone layers. The

groundwater table is controlled by the River Danube form-

ing a hydrostatic system. At a distance of 2 kilometres

from the river bed the in�uence of the river is clearly doc-

umented especially because of the high conductivity of

sandy Miocene layers on the Pest side [28].

3 Data
The data set under investigation comprises the core de-

scription, that is the engineering geological and soil me-

chanical laboratory analyses of 30 cores. The boreholes

were drilled in the surroundings of Kálvin and Rákóczi

Squares (Figure 2). The data was available only on paper

in the form of core logs and laboratory analyses provid-

ing information on the soil, the mechanical and engineer-

ing geological parameters ofMiocene sediments (Figure 1).

The coring depth was between 31 and 75 metres. The stud-

ied cores were selected from a set of 70 cores, the selec-

tion being based on the availability of geographical data,

taking into consideration the question of wether labora-

tory data were measured at the same time. Some of the

previous laboratory analyses had used archive data and

units, and these were converted into SI units. 11 geotech-

nical parameters were selected in the preliminary phase

of research providing 9554 data points. These parameters

were the following: water content, index of plasticity, co-

e�cient of skewness, void ratio, water saturated density,

dry bulk density, angle of friction, cohesion, compressive

strength, modulus of elasticity, Poisson-ratio. After the

digitalization, the data base was further processed and a

coherent data set comprising 1260 data points was used

for multivariate analyses (Table 1). The deposits that were

described in core logs as gravel were not used in themulti-

variate analyses since several parameters (such as index of

plasticity) were not available for these sediments. The core

log descriptions were reviewed and �ve di�erent litholo-

gies were considered in the present study: sand, silt, mod-

erately swelling clay, swelling clay, and bentonite.

4 Statistical and multivariate data
analyses

To evaluate the engineering geological parameters and

their correlation matrix SPSS software was used. Prior to

the application of multivariate data analyses, the �ltering

of data was necessary, since data with strong correlation

parameters are not recommended for use as input vari-

ables in cluster analyses. To analyse stochastic relation-

ships, amatrix of correlationwas used. The correlation co-

e�cient (R) and its square, the coe�cient of determination

(R2

) describe the linear connection [29]. The correlation is

strong, when |R| ≥ 0.7 and weak, when |R| ≤ 0.5.

For data evaluation, it is important that no missing

data occur in the matrix. The samples with missing data
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Figure 1: Location of Budapest in Hungary (a); the outline of Budapest with the new metro line and the study area (b); and (c) the uncovered
geological map of Budapest line 4 with the studied area, marked by a square. Please note that the locations of boreholes are shown on
Figure 2 (the geological map (c) is simpli�ed after [26]).

Figure 2: The location of studied drillings in Budapest (drillings are marked by red circles).

Table 1: Data set used in this paper (see the location of drillings 300, K, T, Z on Figure 2).

number of data drillings (code of boreholes) summary (no. of data points)
300 K T Z

Void ratio e [-] 68 58 18 108 252
Dry bulk density ρd [kg/m3] 68 58 18 108 252
Angle of friction φ [°] 68 58 18 108 252
Cohesion c [kN/m2] 68 58 18 108 252
Compressive strength δ [kPa] 68 58 18 108 252
Summary no. of data - set of drillings 340 290 90 540 1260
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points were not used in the analyses. The extreme val-

ueswere evaluated using published results [23–25, 27] and

also theoretically, thus mistyped and incorrect analytical

results were eliminated. Cluster analysis is a kind of multi-

variate data analysis that allows the reduction of dimen-

sions and the grouping of samples into fairly “homoge-

neous” groups. These groups are called clusters¹ [30, 31].

The grouping is based on similarities and dissimilarities,

and for its application a previous understanding of groups

is not needed. The key tool in the cluster analysis is link-

age distance, which is gradually calculated [32] and visu-

alized in dendrograms. Based on our experience and the

references cited in the text [1, 2, 12] it is necessary to clar-

ify howmany clusters or geologically justi�ed groups there

are within the data set.

The existence of the clusters was veri�ed by using hy-

pothesis tests and linear discriminant analysis. This was

necessary, since the lack of hypothesis tests might lead to

themisinterpretation of results. Discriminant analysiswas

performed to describe the extent to which the planes sep-

arating the groups could be distinguished. The results of

discriminant analysis are shown in the percentages of the

planes that separate groups [33, 34], and it provides infor-

mation on the grouping of each sample. When a repeated

discriminant analysis is performed, the �rst grouping is

considered as primary and the second grouping provides

a new result. These steps are repeated until there is no dif-

ference between the primary and the suggested grouping.

The results are often shown in planes representing the �rst

two discriminate functions [12].

The role of each parameter in determining the clusters

was analyzed by using Wilks’ λ distribution as it is given

in Equation (1). This equation provides information on the

sum of squares within the group as a ratio of the total sum

of squares¹ [35].

λ =

∑
i
∑

j
(
xij − x́i

)
2∑

i
∑

j
(
xij − x́

)
2

, (1)

where xij is the „jth” element of the „ith” group and x́i the
mean of the „ith” group, while x́ is the total mean.

The relationships between each group can be visual-

ized on box-and-whiskers plots [36].

From the selected and gathered eleven parameters

several set of physical parameters (e.g. index of plastic-

ity) cannot be de�ned for all studied lithologies. For clus-

ter analyses strongly correlating parameters are not ap-

propriate, therefore stochastic analyses were made for

1 IBM Introduction to statistical analysis with PASW Statistics. IBM

Company, Chicago IL, USA, 2010.

each lithotypes to ensure the required parameter set. Af-

ter stochastic analyses only �ve parameters remained in

the data set, including void ratio, dry bulk density, an-

gle of internal friction, cohesionandcompressive strength.

252 samples which contain 1260 data were analysed by the

means of mathematical statistics.

5 Results and discussions
The correlation analyses of the selected �ve parameters in-

dicated that there was a very strong correlation between

cohesion and compressive strength, with a correlation co-

e�cient of 0.95. It suggests that these parameters can be

calculated from each other in 90% of cases. Comparison

of box-and-whisker’s plots of 4 parameter analyses (�rst

compressive strength than cohesion was excluded from

the analysis) clearly indicate that these two parameters

are interrelated (Figure 3 and Figure 4). The two param-

eters are linking parameters, since the cohesion of soft

sediments can be calculated from uncon�ned compres-

sive strength. It is also necessary to emphasize, that the

groups on �gures (Figure 3, Figure 4) do not represent uni-

form lithologies but rather contain samples with di�erent

lithologies.

It has been reported previously that cohesion strongly

correlates with slake durability in the case of mudrocks

[21]. The same study also suggests that cohesion is a key

parameter in assessingmudrock properties. Cohesion and

compressive strength would be negligible in mathemati-

cal terms, since they can be calculated from each other,

but from an engineering geological point of view, they rep-

resent important information. Therefore these were also

used in the multivariate analyses. Three di�erent sets of

parameters were studied: one with 5 parameters, and two

with 4 parameters (�rst compressive strength than cohe-

sion was excluded from the analysis).

Based on the results of cluster analyses the samples

were grouped into 4 clusters in each case (5 parameters

and two times 4 parameters analyses).

The groupings were veri�ed using discriminant anal-

ysis, which indicated that the obtained clusters may be

considered to have a veri�cation of 90.8% when 5 param-

eters were used. The centroids of the groups are very dis-

tinct even in 2D (Figure 5). The fourth iteration step of the

discriminant analysis allowed a 100%distinction between

the groups. The linear discriminant analysis also veri�ed

the existence of four distinct groups when 4 parameters

were used.
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Figure 3: Box and whisker’s plots of four parameter analyses: (a) void ratio; (b) dry density, (c) angle of internal friction, and (d) cohesion.

Figure 4: Box-and-whisker’s plot of four parameter analyses: (a) void ratio; (b) dry density, (c) angle of internal friction, and (d) compressive
strength.
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Figure 5: Discriminant results projected onto the 2D surface of the �rst two discriminant fumctions (5 parameters: void ratio, dry density,
angle of internal friction, cohesion and compressive strength).

When cohesion or compressive strength was not consid-

ered in the cluster analysis, the results of the cluster anal-

ysis were di�erent. The grouping was modi�ed less when

compressive strength was not included (Figure 6), since in

the 5 parameter analysis the �rst group overlapped 90%

with the �rst and second group of the 4 parameter anal-

ysis. The second and third groups are coherent with the

united third group. The fourth groups of the analysis are

equal.

Cluster analysis performed without using cohesion

shows a very di�erent picture with signi�cant data scat-

tering (Figure 7). The �rst group of data in the 5 parame-

ter analysis cross-comply 90%with the �rst group, but for

all other groups the data set distribution changed signi�-

cantly.

In cluster analysis it is suggested that one of the two

strongly correlated parameters not be considered; how-

ever from an engineering geological point of view this

study showed that the cluster analysis with 4 parameters

without cohesion or without compressive strength gave

very di�erent results. As a consequence, the coherent use

of these strongly correlating parameters is required to ob-

tain reliable results. This is in good agreement with the

�ndings of [21].

Wilks’ λ statistics indicates which parameter has the

greatest in�uence on cluster formation. According to our

analyses compressive strength and cohesion has the great-

est in�uence on the grouping while angle of internal fric-

tion is the least in�uencing factor for all three scenarios

(that is the 5 parameter and the two 4 parameter analyses)

(Table 2). Void ratio and dry bulk density have a moder-

ate degree of in�uence on cluster formation. The angle of

internal friction was also found to be less important pa-

rameter when an intensive data set of riverbank soils was

studied [37].

The discriminant analysis did not allow the di�eren-

tiation of the various lithological categories of core logs;

a signi�cant overlap was found for the same lithologies.

The original groups of lithotypes were correctly identi�ed

only in 35-45% of cases (Figure 8). As a consequence, sed-

iments that were described as sand in the core logs might

have properties associated with swelling clay, or alterna-

tively the oppositemay also occur. The overlaps are also re-

lated to the fact that the physical parameters of sediments

are strongly controlled by material properties and micro-

fabric, such as lamination, orientation of clay layers, and

syn-sedimentary deformation structures. The importance

of clay mineralogy and the clay content as a control func-

tion of the physical properties such as density, Atterberg

consistency limits and compressive strength of mudrocks

were also emphasized by [38]. Carbonate content can also

have a strong e�ect on the strength and plasticity of hard

soils-soft rocks [39]. Our study provides a fresh example

of the fact that lithological variations only partly deter-

mine the strength parameters and cohesion, angle of fric-

tion canbehighly variable anddisplaymajor changes even
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Figure 6: Discriminant analysis results projected onto the 2D surface of the �rst two discriminant functions (4 parameters: void ratio, dry
density, angle of internal friction, cohesion).

Figure 7: Discriminant analysis results projected onto the 2D surface of the �rst two discriminant functions (4 parameters: void ratio, dry
density, angle of internal friction, and compressive strength).
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Table 2:Wilks’ λ values for 5 parameters and 4 parameters (alternately, either compressive strength or cohesion was not considered for the
4 parameter analyses).

Parameter 5 parameters 4 parameters (no compressive strength) 4 parameters (no cohesion)
compressive strength 0.228 - 0.223
cohesion 0.232 0.139 -
void ratio 0.324 0.578 0.405
dry bulk density 0.438 0.564 0.513
angle of friction 0.77 0.836 0.86

Figure 8: Discriminant analysis results obtained from lithological descriptions of core logs (5 parameters: void ratio, dry density, angle of
internal friction, cohesion and compressive strength).
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when only a minor amount of clay is found in the sam-

ple [21]. The other factors thatmight in�uence the parame-

ters are micro-fractures and cementation. Minor amounts

of clay minerals in sand or silt can increase the compres-

sive strength to suchanextent that the clay containing sed-

iment has a higher strength than pure sand or silt [39].

In the current study, no clay content data was available

and the mineralogy of the samples was not listed in the

core logs or laboratory analyses. The results of discrimi-

nant analysis clearly demonstrate that the lithological de-

scriptions can only be used conscientiously with strong

reservation. Accordingly, it is not possible to predict the

physical properties of a given strata based on the litholog-

ical description of these core logs.

6 Conclusions

A large data set of engineering geological parameters ob-

tained from laboratory tests of core drillings over a rela-

tive small area represent very heterogeneous rock types

with various parameters. Of the 11 available geotechni-

cal parameters and 9554 data points only �ve parame-

ters remained in the data set after �ltration suggesting

that archive data sources may often be problematic to deal

with. Of the available parameters a coherent data set con-

taining 1260 data points was used for multivariate anal-

yses representing �ve engineering geological index prop-

erties such as void ratio, dry bulk density, angle of fric-

tion, cohesion and compressive strength. In the study �ve

di�erent lithologies were considered: sand, silt, moder-

ately swelling clay, swelling clay, and bentonite, but the

discriminant analysis did not allow the di�erentiation of

the various lithological categories of core logs; a signi�-

cant overlap was found for the same lithologies. This indi-

cates that minor di�erences in lithology such as clay con-

tent or carbonate cementation can cause major discrepan-

cies in physical parameters. TheWilks’ λ distribution anal-

ysis suggests that compressive strength and cohesion have

the highest in�uence on the grouping, while internal fric-

tion angle has the lowest in�uence on data point distribu-

tion in clusters. In correlation analyses a very strong cor-

relation between cohesion and compressive strength was

found with a correlation coe�cient of 0.95. From the point

of view of mathematical considerations these parameters

are strongly related, but our study suggests that from an

engineering geological point of view they represent impor-

tant information and thus it is suggested that both param-

eters be used in multivariate analyses.
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