Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 14, 2016

Hyers–Ulam stability of spherical functions

  • Belaid Bouikhalene and Elhoucien Eloqrachi EMAIL logo

Abstract

In [15] we obtained the Hyers–Ulam stability of the functional equation

KGf(xtk·y)dμ(t)dk=f(x)g(y),x,yG,

where G is a Hausdorff locally compact topological group, K is a compact subgroup of morphisms of G, μ is a K-invariant complex measure with compact support, provided that the continuous function f satisfies some Kannappan type condition. The purpose of this paper is to remove this restriction.

MSC: 39B52; 39B82

References

1 J. Aczél and J. Dhombres, Functional Equations in Several Variables. With Applications to Mathematics, Information Theory and to the Natural and Social Sciences, Encyclopedia Math. App. 31, Cambridge University Press, Cambridge, 1989. 10.1017/CBO9781139086578Search in Google Scholar

2 M. Akkouchi, A. Bakali, B. Bouikhalene and E. Elqorachi, Badora's equation on non-abelian locally compact groups, Georgian Math. J. 11 (2004), 3, 449–466. 10.1515/GMJ.2004.449Search in Google Scholar

3 M. Akkouchi, B. Bouikhalene and E. Elqorachi, Functional equations and μ-spherical functions, Georgian Math. J. 15 (2008), 1, 1–20. 10.1515/GMJ.2008.1Search in Google Scholar

4 M. Akkouchi and E. Elqorachi, The superstability of the generalized d'Alembert functional equation, Georgian Math. J. 10 (2003), 3, 503–508. 10.1515/GMJ.2003.503Search in Google Scholar

5 R. Badora, On a joint generalization of Cauchy's and d'Alembert's functional equations, Aequationes Math. 43 (1992), 1, 72–89. 10.1007/BF01840476Search in Google Scholar

6 R. Badora, Note on the superstability of the Cauchy functional equation, Publ. Math. Debrecen 57 (2000), 3–4, 421–424. 10.5486/PMD.2000.2216Search in Google Scholar

7 R. Badora, On Hyers–Ulam stability of Wilson's functional equation, Aequationes Math. 60 (2000), 3, 211–218. 10.1007/s000100050147Search in Google Scholar

8 R. Badora, On the stability of a functional equation for generalized trigonometric functions, Functional Equations and Inequalities, Math. Appl. 518, Kluwer, Dordrecht (2000), 1–5. 10.1007/978-94-011-4341-7_1Search in Google Scholar

9 R. Badora, On the stability of some functional equations, 10th International Conference on Functional Equations and Inequalities (Bȩdlewo 2005), Ann. Acad. Paed. Cracoviensis Studia Math. 5 (2006), 130. Search in Google Scholar

10 R. Badora, Stability properties of some functional equations, Functional Equations In Mathematical Analysis, Springer Optim. Appl. 52, Springer, New York (2012), 3–13. 10.1007/978-1-4614-0055-4_1Search in Google Scholar

11 J. A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), 3, 411–416. 10.1090/S0002-9939-1980-0580995-3Search in Google Scholar

12 J. A. Baker, J. Lawrence and F. Zorzitto, The stability of the equation f(x+y)=f(x)f(y), Proc. Amer. Math. Soc. 74 (1979), 2, 242–246. 10.1090/S0002-9939-1979-0524294-6Search in Google Scholar

13 B. Bouikhalene, A. Charifi and E. Elqorachi, Hyers–Ulam–Rassias stability of a generalized Pexider functional equation, Banach J. Math. Anal. 1 (2007), 2, 176–185. 10.15352/bjma/1240336214Search in Google Scholar

14 B. Bouikhalene, A. Charifi, E. Elqorachi and A. Redouani, Hyers–Ulam–Rassias stability of a generalized Jensen functional equation, Aust. J. Math. Anal. Appl. 6 (2009), 1, Article ID 19. Search in Google Scholar

15 B. Bouikhalene and E. Elqorachi, On Stetkær type functional equations and Hyers–Ulam stability, Publ. Math. Debrecen 69 (2006), 1–2, 95–120. 10.5486/PMD.2006.3275Search in Google Scholar

16 B. Bouikhalene, E. Elqorachi and J. M. Rassias, The superstability of d'Alembert's functional equation on the Heisenberg group, Appl. Math. Lett. 23 (2010), 1, 105–109. 10.1016/j.aml.2009.08.013Search in Google Scholar

17 B. Bouikhalene, E. Elqorachi and T. M. Rassias, On the Hyers–Ulam stability of approximately Pexider mappings, Math. Inequal. Appl. 11 (2008), 4, 805–818. 10.7153/mia-11-70Search in Google Scholar

18 L. Cǎdariu and V. Radu, Fixed points and the stability of Jensen's functional equation, JIPAM. J. Inequal. Pure Appl. Math. 4 (2003), 1, Article ID 4. Search in Google Scholar

19 W. Chojnacki, On some functional equation generalizing Cauchy's and d'Alembert's functional equations, Colloq. Math. 55 (1988), 1, 169–178. 10.4064/cm-55-1-169-178Search in Google Scholar

20 E. Elqorachi, T. M. Rassias and A. Redouani, The superstability of d'Alembert's functional equation on step 2 nilpotent groups, Aequationes Math. 74 (2007), 3, 226–241. 10.1007/s00010-007-2902-xSearch in Google Scholar

21 G. L. Forti, Hyers–Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 1–2, 143–190. 10.1007/978-3-0348-9096-0_9Search in Google Scholar

22 Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci. 14 (1991), 3, 431–434. 10.1155/S016117129100056XSearch in Google Scholar

23 P. Gǎvruta, A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 3, 431–436. 10.1006/jmaa.1994.1211Search in Google Scholar

24 R. Ger, Superstability is not natural, Rocznik Nauk.-Dydakt. Prace Mat. 13 (1993), 109–123. Search in Google Scholar

25 R. Ger and P. Šemrl, The stability of the exponential equation, Proc. Amer. Math. Soc. 124 (1996), 3, 779–787. 10.1090/S0002-9939-96-03031-6Search in Google Scholar

26 D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA. 27 (1941), 222–224. 10.1073/pnas.27.4.222Search in Google Scholar PubMed PubMed Central

27 D. H. Hyers, G. I. Isac and T. M. Rassias, Stability of Functional Equations in Several Variables, Progr. Nonlinear Differential Equations Appl. 34, Birkhäuser, Boston, 1998. 10.1007/978-1-4612-1790-9Search in Google Scholar

28 D. H. Hyers and T. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 2–3, 125–153. 10.1007/BF01830975Search in Google Scholar

29 S.-M. Jung, Stability of the quadratic equation of Pexider type, Abh. Math. Sem. Univ. Hamburg 70 (2000), 175–190. 10.1007/BF02940912Search in Google Scholar

30 S.-M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001. Search in Google Scholar

31 S.-M. Jung and P. K. Sahoo, Stability of a functional equation of Drygas, Aequationes Math. 64 (2002), 3, 263–273. 10.1007/PL00012407Search in Google Scholar

32 G. H. Kim, On the stability of trigonometric functional equations, Adv. Difference Equ. 2007 (2007), Article ID 90405. 10.1155/2007/90405Search in Google Scholar

33 G. H. Kim, On the stability of the Pexiderized trigonometric functional equation, Appl. Math. Comput. 203 (2008), 1, 99–105. 10.1016/j.amc.2008.04.011Search in Google Scholar

34 J. Lawrence, The stability of multiplicative semigroup homomorphisms to real normed algebras. I, Aequationes Math. 28 (1985), 1–2, 94–101. 10.1007/BF02189397Search in Google Scholar

35 M. B. Moghimi and A. Najati, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl. 337 (2008), 1, 399–415. 10.1016/j.jmaa.2007.03.104Search in Google Scholar

36 M. S. Moslehian, The Jensen functional equation in non-Archimedean normed spaces, J. Funct. Spaces Appl. 7 (2009), 1, 13–24. 10.1155/2009/802032Search in Google Scholar

37 M. S. Moslehian and G. Sadeghi, Stability of linear mappings in quasi-Banach modules, Math. Inequal. Appl. 11 (2008), 3, 549–557. 10.7153/mia-11-44Search in Google Scholar

38 A. Najati, On the stability of a quartic functional equation, J. Math. Anal. Appl. 340 (2008), 1, 569–574. 10.1016/j.jmaa.2007.08.048Search in Google Scholar

39 A. Najati and C. Park, Hyers–Ulam–Rassias stability of homomorphisms in quasi-Banach algebras associated to the Pexiderized Cauchy functional equation, J. Math. Anal. Appl. 335 (2007), 2, 763–778. 10.1016/j.jmaa.2007.02.009Search in Google Scholar

40 M. M. Pourpasha, J. M. Rassias, R. Saadati and S. M. Vaezpour, A fixed point approach to the stability of Pexider quadratic functional equation with involution, J. Inequal. Appl. 2010 (2010), Article ID 839639. 10.1155/2010/839639Search in Google Scholar

41 J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), 1, 126–130. 10.1016/0022-1236(82)90048-9Search in Google Scholar

42 J. M. Rassias, Solution of a problem of Ulam, J. Approx. Theory 57 (1989), 3, 268–273. 10.1016/0021-9045(89)90041-5Search in Google Scholar

43 J. M. Rassias, On the Ulam stability of mixed type mappings on restricted domains, J. Math. Anal. Appl. 276 (2002), 2, 747–762. 10.1142/9789813147614_0016Search in Google Scholar

44 T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 2, 297–300. 10.1090/S0002-9939-1978-0507327-1Search in Google Scholar

45 T. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 1, 23–130. 10.1023/A:1006499223572Search in Google Scholar

46 T. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 2, 352–378. 10.1006/jmaa.2000.6788Search in Google Scholar

47 T. M. Rassias and J. Tabor (eds.), Stability of Mappings of Hyers–Ulam Type, Hadronic Press Collection of Original Articles, Hadronic Press, Palm Harbor, 1994. Search in Google Scholar

48 H. Shin'ya, Spherical matrix functions and Banach representability for locally compact motion groups, Japan. J. Math. (N.S.) 28 (2002), 2, 163–201. 10.4099/math1924.28.163Search in Google Scholar

49 H. Stetkær, d'Alembert's equation and spherical functions, Aequationes Math. 48 (1994), 2–3, 220–227. 10.1007/BF01832986Search in Google Scholar

50 H. Stetkær, Functional equations and spherical functions, preprint 1994, Preprint Series no. 18, Mathematisk Institut, Aarhus University. Search in Google Scholar

51 H. Stetkær, Wilson's functional equations on groups, Aequationes Math. 49 (1995), 3, 252–275. 10.1007/BF01827944Search in Google Scholar

52 H. Stetkær, Functional equations on abelian groups with involution, Aequationes Math. 54 (1997), 1–2, 144–172. 10.1007/BF02755452Search in Google Scholar

53 H. Stetkær, Functional equations and matrix-valued spherical functions, Aequationes Math. 69 (2005), 3, 271–292. 10.1007/s00010-004-2754-6Search in Google Scholar

54 H. Stetkær, Functional Equations on Groups, World Scientific, Hackensack, 2013. 10.1142/8830Search in Google Scholar

55 L. Székelyhidi, On a stability theorem, C. R. Math. Rep. Acad. Sci. Canada 3 (1981), 5, 253–255. Search in Google Scholar

56 L. Székelyhidi, On a theorem of Baker, Lawrence and Zorzitto, Proc. Amer. Math. Soc. 84 (1982), 1, 95–96. 10.1090/S0002-9939-1982-0633285-6Search in Google Scholar

57 L. Székelyhidi, The stability of d'Alembert-type functional equations, Acta Sci. Math. (Szeged) 44 (1982), 3–4, 313–320. Search in Google Scholar

58 S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts Pure Appl. Math. 8, Interscience Publishers, New York, 1960. Search in Google Scholar

Received: 2014-1-25
Accepted: 2015-1-20
Published Online: 2016-1-14
Published in Print: 2016-6-1

© 2016 by De Gruyter

Downloaded on 3.6.2023 from https://www.degruyter.com/document/doi/10.1515/gmj-2015-0052/html
Scroll to top button