Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 5, 2018

Algorithms in A-algebras

Mikael Vejdemo-Johansson ORCID logo

Abstract

Based on Kadeishvili’s original theorem inducing A-algebra structures on the homology of dg-algebras, several directions of algorithmic research in A-algebras have been pursued. In this paper, we survey the work done on calculating explicit A-algebra structures from homotopy retractions, in group cohomology and in persistent homology.

MSC 2010: 20J06; 55P48

Dedicated to Tornike Kadeishvili


References

[1] F. Belchí, Optimising the topological information of the A-persistence groups, preprint (2017), https://arxiv.org/abs/1706.06019. 10.1007/s00454-019-00094-xSearch in Google Scholar

[2] F. Belchí and A. Murillo, A-persistence, Appl. Algebra Engrg. Comm. Comput. 26 (2015), no. 1–2, 121–139. 10.1007/s00200-014-0241-4Search in Google Scholar

[3] A. Berciano, Cálculo simbólico y técnicas de control de A-infinito estructuras Ph.D. thesis, Universidad de Sevilla, 2006. Search in Google Scholar

[4] A. Berciano, H. Molina-Abril and P. Real, Searching high order invariants in computer imagery, Appl. Algebra Engrg. Comm. Comput. 23 (2012), no. 1–2, 17–28. 10.1007/s00200-012-0169-5Search in Google Scholar

[5] A. Berciano and P. Real, A-coalgebra structure on the p-homology of Eilenberg–Mac Lane spaces, Proceedings EACA (2004), http://www.ehu.eus/aba/articles/ainhoa-eaca04.pdf. Search in Google Scholar

[6] A. Berciano and P. Real, A-coalgebra structure maps that vanish on H*(K(π,n);p), Forum Math. 22 (2010), no. 2, 357–378. Search in Google Scholar

[7] A. Berciano and R. Umble, Some naturally occurring examples of A-bialgebras, J. Pure Appl. Algebra 215 (2011), no. 6, 1284–1291. 10.1016/j.jpaa.2010.08.012Search in Google Scholar

[8] A. Berciano-Alcaraz, A computational approach of A-(co)algebras, Int. J. Comput. Math. 87 (2010), no. 4, 935–953. 10.1080/00207160802247612Search in Google Scholar

[9] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3–4, 235–265. 10.1006/jsco.1996.0125Search in Google Scholar

[10] R. Brown, The twisted Eilenberg–Zilber theorem, Simposio di Topologia (Messina 1964), Edizioni Oderisi, Gubbio (1965), 33–37. Search in Google Scholar

[11] G. Carlsson, Topology and data, Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 2, 255–308. 10.1090/S0273-0979-09-01249-XSearch in Google Scholar

[12] F. Chazal, V. De Silva, M. Glisse and S. Oudot, The Structure and Stability of Persistence Modules, Springer Briefs Math., Springer, Cham, 2016. 10.1007/978-3-319-42545-0Search in Google Scholar

[13] D. Cohen-Steiner, H. Edelsbrunner and J. Harer, Stability of persistence diagrams, Discrete Comput. Geom. 37 (2007), no. 1, 103–120. 10.1007/s00454-006-1276-5Search in Google Scholar

[14] R. Ghrist, Barcodes: The persistent topology of data, Bull. Amer. Math. Soc. (N.S.) 45 (2008), no. 1, 61–75. 10.1090/S0273-0979-07-01191-3Search in Google Scholar

[15] V. K. A. M. Gugenheim, L. A. Lambe and J. D. Stasheff, Perturbation theory in differential homological algebra. II, Illinois J. Math. 35 (1991), no. 3, 357–373. 10.1215/ijm/1255987784Search in Google Scholar

[16] E. Herscovich, A higher homotopic extension of persistent (co) homology, preprint (2014), https://arxiv.org/abs/1412.1871. 10.1007/s40062-017-0195-xSearch in Google Scholar

[17] T. V. Kadeishvili, On the theory of homology of fiber spaces (in Russian), Uspekhi Mat. Nauk 35 (1980), no. 3(213), 183–188; translation in Russian Math. Surveys 35 (1980), no. 3, 231–238. Search in Google Scholar

[18] B. Keller, Introduction to A-infinity algebras and modules, Homology Homotopy Appl. 3 (2001), no. 1, 1–35. 10.4310/HHA.2001.v3.n1.a1Search in Google Scholar

[19] B. Keller, A-infinity algebras in representation theory, Representations of Algebra. Vol. I, II, Beijing Normal University Press, Beijing (2002), 74–86. Search in Google Scholar

[20] D.-M. Lu, J. H. Palmieri, Q.-S. Wu and J. J. Zhang, A-algebras for ring theorists, Algebra Colloq. 11 (2004), no. 1, 91–128. Search in Google Scholar

[21] D.-M. Lu, J. H. Palmieri, Q.-S. Wu and J. J. Zhang, A-infinity structure on Ext-algebras, preprint (2006), https://arxiv.org/abs/math/0606144. Search in Google Scholar

[22] D. Madsen, Homological aspects in representation theory, Ph.D. thesis, Norges Teknisk-Naturvitenskapelige Universitet, 2002. Search in Google Scholar

[23] S. A. Merkulov, Strong homotopy algebras of a Kähler manifold, Int. Math. Res. Not. IMRN 1999 (1999), no. 3, 153–164. 10.1155/S1073792899000070Search in Google Scholar

[24] S. Saneblidze and R. Umble, Diagonals on the permutahedra, multiplihedra and associahedra, Homology Homotopy Appl. 6 (2004), no. 1, 363–411. 10.4310/HHA.2004.v6.n1.a20Search in Google Scholar

[25] S. Schmid, An A-structure on the cohomology ring of the symmetric group Sp with coefficients in 𝔽p, Algebr. Represent. Theory 17 (2014), no. 5, 1553–1585. 10.1007/s10468-013-9459-2Search in Google Scholar

[26] J. D. Stasheff, Homotopy associativity of H-spaces. I, Trans. Amer. Math. Soc. 108 (1963), 275–292. 10.1090/S0002-9947-1963-99936-3Search in Google Scholar

[27] J. D. Stasheff, Homotopy associativity of H-spaces. II, Trans. Amer. Math. Soc. 108 (1963), 293–312. 10.2307/1993609Search in Google Scholar

[28] M. Vejdemo-Johansson, Enumerating the Saneblidze–Umble diagonal terms, preprint (2007), https://arxiv.org/abs/0707.4399. Search in Google Scholar

[29] M. Vejdemo-Johansson, Computation of A-infinity algebras in group cohomology, Ph.D. thesis, Friedrich-Schiller-Universität Jena, 2008. Search in Google Scholar

[30] M. Vejdemo-Johansson, A partial A-structure on the cohomology of Cn×Cm, J. Homotopy Relat. Struct. 3 (2008), no. 1, 1–11. Search in Google Scholar

[31] M. Vejdemo-Johansson, Blackbox computation of A-algebras, Georgian Math. J. 17 (2010), no. 2, 391–404. 10.1515/gmj.2010.005Search in Google Scholar

[32] M. Vejdemo-Johansson, Sketches of a platypus: A survey of persistent homology and its algebraic foundations, Algebraic Topology: Applications and new Directions, Contemp. Math. 620, American Mathematical Society, Providence (2014), 295–319. 10.1090/conm/620/12371Search in Google Scholar

[33] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.8.8, 2017. Search in Google Scholar

Received: 2017-11-15
Accepted: 2018-06-12
Published Online: 2018-10-05
Published in Print: 2018-12-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston