Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 9, 2019

Genetic and Phenotypic Diversity of the Sunflower Collection of the Pustovoit All-Russia Research Institute of Oil Crops (VNIIMK)

  • S.V. Goryunova EMAIL logo , D.V. Goryunov , A.I. Chernova , E.U. Martynova , A.E. Dmitriev , S.V. Boldyrev , A.F. Ayupova ORCID logo , P.V. Mazin ORCID logo , E.A. Gurchenko , A.S. Pavlova ORCID logo , D.A. Petrova ORCID logo , Y.V. Chebanova , L.A. Gorlova , S.V. Garkusha , Z.M. Mukhina , E.G. Savenko and Y.N. Demurin
From the journal Helia


Publicly supported collections of cultivated germplasm are one of the key sources of new genes for crop improvement. VNIIMK is the leading organization in oil and essential oil crop breeding and seed growing in the Russian Federation with more than a century-long history. Sunflower varieties created by V.S. Pustovoit at VNIIMK became the basis for the development of the modern sunflower varieties worldwide. In the present study, 186 sunflower lines from the VNIIMK collection were characterized based on their genotype and general morphological and phenological economically-important traits. Additionally, for 99 sunflower lines fatty acid content, seed oil content, seed husk content, 100-seed weight, and seed number in the head were determined. Sequencing of RAD-libraries and the subsequent analysis have identified 65,553 variants including SNPs and indels. LD analysis revealed substantial variability across the genome. The longest LD blocks (>5,000 Kb) were found in the linkage groups 1, 5, and 17. The analysis revealed significant genetic and phenotypic diversity of the VNIIMK sunflower collection. Novel significant associations with linolenic acid content in the seeds were found on LGs 8, 9, and 17.

Funding statement: Funder Name: Ministry of Science and Higher Education of the Russian Federation, Grant Number: 14.609.21.0099, Identification No. RFMEFI60916X0099.


This study was carried out using resources of the Skoltech Genomics Core Facility.


Alpaslan, M., Gunduz, H., 2000. The effects of growing conditions on oil content, fatty acid composition and tocopherol content of some sunflower varieties produced in Turkey. Nahrung/Food 44: 434–437. DOI:10.1002/1521-3803(20001201)44:6<434::AID-FOOD434>3.0.CO;2-1.Search in Google Scholar

Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England) 30: 2114–2120. DOI:10.1093/bioinformatics/btu170.Search in Google Scholar

Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., Lee, J.J., 2015. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 4: 7. DOI:10.1186/s13742-015-0047-8.Search in Google Scholar

Demurin, Y., 2003. Up-to-date results on biochemical genetics of sunflower in VNIIMK/Los resultados mas recientes de la genetica bioquimica de girasol, obtenidos en el instituto VNIIMK/Tout derniers reésultats de genetique biochimique du tournesol a l’institut VNIIMK. Helia 26: 137–142. DOI:10.2298/hel0338137d.Search in Google Scholar

Demurin, Y., Borisenko, O., 2011. Genetic collection of oleic acid content in sunflower seed oil. Helia 34: 69–74. DOI:10.2298/hel1155069d.Search in Google Scholar

Fick, G.N., Miller, J.F., 1997. Sunflower Breeding. Sunflower Technology and Production Agronomymonogra, pp. 395–439. DOI:10.2134/agronmonogr35.c8.Search in Google Scholar

Gavrilova, V.A., Rozhkova, V.T., Anisimova, I.N., 2014. Sunflower genetic collection at the Vavilov institute of plant industry. Helia 37: 1–16. DOI:10.1515/helia-2014-0001.Search in Google Scholar

Glaubitz, J.C., Casstevens, T.M., Lu, F., Harriman, J., Elshire, R.J., Sun, Q., Buckler, E.S., 2014. TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline. Plos One 9: e90346. DOI:10.1371/journal.pone.0090346.Search in Google Scholar

Gontcharov, S.V., 2012. Hybrid sunflower breeding in VNIIMK (Russia). In: Proc. 18th International Sunflower Conference. pp. 628–633.Search in Google Scholar

Kaya, Y., Baltensperger, D., Nelson, L., Miller, J., 2004. Maturity grouping in sunflower (Helianthus Annuus L.)/clasificacion De Girasol (Helianthus Annuus L.) Por Grupos De Maduración/classification De Tournesol (Helianthus Annuus L.) Selon Les Groupes De Maturation. Helia 27: 257–270. DOI:10.2298/Hel0440257k.Search in Google Scholar

Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874. DOI:10.1093/molbev/msw054.Search in Google Scholar

Mandel, J.R., Nambeesan, S., Bowers, J.E., Marek, L.F., Ebert, D., Rieseberg, L.H., Knapp, S.J., Burke, J.M., 2013. Association mapping and the genomic consequences of selection in sunflower. PLOS Genetics 9: e1003378. DOI:10.1371/journal.pgen.1003378.Search in Google Scholar PubMed PubMed Central

Marek, L.F., Larsen, I., Block, C., Gardner, C., 2004. The sunflower collection at the North central regional plant introduction station. In: Proceedings 16th international sunflower conference Fargo, ND, USA, pp. 761–765.Search in Google Scholar

Nambeesan, S.U., Mandel, J.R., Bowers, J.E., Marek, L.F., Ebert, D., Corbi, J., Rieseberg, L.H., Knapp, S.J., Burke, J.M., 2015. Association mapping in sunflower (Helianthus annuus L.) reveals independent control of apical vs. basal branching. BMC Plant Biology 15: 84. DOI:10.1186/s12870-015-0458-9.Search in Google Scholar PubMed PubMed Central

Pleite, R., Martínez-Force, E., Garces, R., 2006. Increase of the stearic acid content in high-oleic sunflower (Helianthus annuus) seeds. Journal of Agricultural and Food Chemistry 54: 9383–9388. DOI:10.1021/jf061654f.Search in Google Scholar PubMed

Pustovoit, V.S., 1990. Selected Works, Agropromizdat, Moscow, Russia, pp. 367.Search in Google Scholar

Puzikov, A.N., Suvorova, Y.N., 2016. Testing sunflower varieties under the conditions of the southern forest-steppe of West Siberia. Vestnik OmGAU №2 (22). Accessed 31 October, 2018.Search in Google Scholar

Tang, S., Leon, A., Bridges, W.C., Knapp, S.J., 2006. Quantitative Trait Loci for genetically correlated seed traits are tightly linked to branching and Pericarp pigment Loci in sunflower. Crop Science 46: 721–734. DOI:10.2135/cropsci2005.0006-7.Search in Google Scholar

Thompson, A.P., Dougherty, D., 1998. A system to classify sunflower hybrids according to PM. Sunflower Research Workshop by National Sunflower Association. 15–16 January, 1998. Fargo, ND.Search in Google Scholar

Turner, S.D. 2014. qqman: An R package for visualizing GWAS results using QQ and manhattan plots. BioRxiv:5165.10.1101/005165Search in Google Scholar

Zhang, Z., Ersoz, E., Lai, C.-Q., Todhunter, R.J., Tiwari, H.K., Gore, M.A., Bradbury, P.J., Yu, J., Arnett, D.K., Ordovas, J.M., Buckler, E.S., 2010. Mixed linear model approach adapted for genome-wide association studies. NatureGenetics 42: 355–360. DOI:10.1038/ng.546.Search in Google Scholar PubMed PubMed Central

Zhigunov, A.V., Ulianich, P.S., Lebedeva, M.V., Chang, P.L., Nuzhdin, S.V., Potokina, E.K., 2017. Development of F1 hybrid population and the high-density linkage map for European aspen (Populus tremula L.) using RADseq technology. BMC Plant Biol 14 November, 2017 17(Suppl 1): 180. DOI:10.1186/s12870-017-1127-y.Search in Google Scholar PubMed PubMed Central

Supplemental Material

The online version of this article offers supplementary material (

Received: 2018-11-17
Accepted: 2019-02-19
Published Online: 2019-03-09
Published in Print: 2019-07-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.12.2023 from
Scroll to top button