Accessible Unlicensed Requires Authentication Published by De Gruyter February 27, 2013

Condensed conifer tannins as antifungal agents in liquid culture

Anna-Kaisa Anttila, Anna Maria Pirttilä, Hely Häggman, Anni Harju, Martti Venäläinen, Antti Haapala, Bjarne Holmbom and Riitta Julkunen-Tiitto
From the journal Holzforschung

Abstract

In the last decades, many wood preservatives have been prohibited for their ecotoxicity. The present article is focusing on the conifer-derived condensed tannins as environment-friendly options for the substitution of artificial wood preservatives. Eight different tannin fractions were extracted from spruce cones, spruce barks, and pine cones. The parameters of tannin extraction, such as the methods of purification and concentration of active components in the extracts, have been investigated. The cone and bark extracts were tested for the growth inhibition of eight brown-rot fungi, three white-rot fungi, and four soft-rot fungi in liquid cultures. The cone tannins provided a more efficient fungal growth inhibition than bark tannins. Purification increased the antifungal properties of the extracts. The growth of brown-rot fungi was inhibited by the tannins already at low concentrations. However, the extracts were not effective against the white-rot or soft-rot fungi. More investigation is needed concerning the tannin source and the purification procedure of the extracts before tannins can be considered as an ecologically benign wood preservative.


Corresponding author: Anna-Kaisa Anttila, Biology Department, University of Oulu, Oulu, Finland, e-mail:

We thank Eveliina Hiltunen (UEF) for carrying out the acid-BuOH experiment, the VTT and the Åbo Akademi personnel for providing the tannin extracts, and the Finnish Bioeconomy Cluster for the support and for financing the study.

References

Binbuga, N., Chambers, K., Henry, W.P., Schultz, T.P. (2005) Metal chelation studies relevant to wood preservation. 1. Complexation of propyl gallate with Fe2+. Holzforschung 59:205–209. Search in Google Scholar

Binbuga, N., Ruhs, C., Hasty, J.K., Henry, W.P., Schultz, T.P. (2008) Developing environmentally benign and effective organic wood preservatives by understanding the biocidal and non-biocidal properties of extractives in naturally durable heartwood. Holzforschung 62:264–269. Search in Google Scholar

Celimene, C.C., Micales, J.A., Ferge, L., Young, R.A. (1999) Efficacy of pinosylvins against white-rot and brown-rot fungi. Holzforschung 53:491–497. Search in Google Scholar

Cowan, M. (1999) Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12:564–582. Search in Google Scholar

Cruz-Hernandez, M., Contreras-Esquivel, J., Faustino, L., Rodriguez, R., Aguila, C. (2005) Isolation and evaluation of tannin-degrading fungal strains from the Mexican desert. Z. Naturforsch. C. 60:844–848. Search in Google Scholar

Dai, J., Mumper, R.J. (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352. Search in Google Scholar

Deacon, J. Fungal Biology. Wiley-Blackwell Publishing Ltd., Oxford, UK, 2006. Search in Google Scholar

Donoso-Fierro, C., Becerra, J., Bustos-Concha, E., Silva, M. (2009) Chelating and antioxidant activity of lignans from Chilean woods (Cupressaceae). Holzforschung 63:559–563. Search in Google Scholar

Eberhardt, T.L., Young, R.A. (1994) Conifer seed cone proanthocyanidin polymers: characterization by 13C NMR spectroscopy and determination of antifungal activities. J. Agric. Food Chem. 42:1704–1708. Search in Google Scholar

Gaffney, S.H., Martin, R., Lilley, T.H., Haslam, E., Magnolato, D. (1986) The association of polyphenols with caffeine and alpha- and beta-cyclodextrin in aqueous media. J. Chem. Soc. Comm. 2:107–109. Search in Google Scholar

Gao, H., Shupe, T.F., Hse, C.Y., Eberhardt, T.L. (2006) Antioxidant activity of extracts from the bark of Chamaecyparis lawsoniana (A. Murray) Parl. Holzforschung 60:459–462. Search in Google Scholar

Hagerman, A.E. The Tannin Handbook. Miami University, Oxford, OH, 2011. Available at: http://chemistry.muohio.edu/hagerman. Search in Google Scholar

Harborne, J.B. Phytochemical methods: a guide to modern techniques of plant analysis. Chapman & Hall, New York, 1984. Search in Google Scholar

Haslam, E. Practical polyphenols, from structure to molecular recognition and physiological action. Cambridge University Press, Cambridge, UK, 1998. Search in Google Scholar

Hernes, P.J., Hedges, J.I. (2004) Tannin signatures of barks, needles, leaves, cones, and wood at the molecular level. Geochim. Cosmochim. Acta 68:1293–1307. Search in Google Scholar

Julkunen-Tiitto, R., Häggman, H. Tannins and tannin agents. (Eds.) Bechtold, T., Mussak, R. In: Handbook of Natural Colorants. John Wiley & Sons Ltd., Chichester, UK, 2009. pp. 201–219. Search in Google Scholar

Laks, P.E., McKaig, P.A., Hemingway, R.W. (1988) Flavonoid biocides: wood preservatives based on condensed tannins. Holzforschung 42:299–306. Search in Google Scholar

Liers, C., Ullrich, R., Steffen, K.T., Hatakka, A., Hofrichter, M. (2006) Mineralization of 14C-labelled synthetic lignin and extracellular enzyme activities of the wood-colonizing ascomycetes Xylaria hypoxylon and Xylaria polymorpha. Appl. Microbiol. Biotechnol. 69:573–579. Search in Google Scholar

Liimatainen, J., Karonen, M., Sinkkonen, J., Helander, M., Salminen, J.-P. (2011) Characterization of phenolic compounds from inner bark of Betula pendula. Holzforschung 66: 171–181. Search in Google Scholar

Makino, R., Ohara, S., Hashida, K. (2011) Radical scavenging characteristics of condensed tannins from barks of various tree species compared with quebracho wood tannin. Holzforschung 65:651–657. Search in Google Scholar

Mendiola, J.A., Herrero, M., Cifuentes, A., Ibanez, E. (2007) Use of compressed fluids for sample preparation: food applications. J. Chromatogr. A 1152:234–246. Search in Google Scholar

Niemenmaa, O. Monitoring on fungal growth and degradation of wood. doctoral dissertation. University of Helsinki University Press, Finland, 2008. Search in Google Scholar

Pizzi, A., Beacker, A. (1996) A new boron fixation mechanism for environment friendly wood preservatives. Holzforschung 50:507–510. Search in Google Scholar

Porter, L.J. Structure and chemical properties of the condensed tannins. (Eds.) Hemingway, R.W., Laks, P.E. In: Plant Polyphenols. Plenum Press, New York, 1992. pp. 245–258. Search in Google Scholar

Porter, L.J, Hrstich, L.N., Chan, B.G. (1986) The conversion of proanthocyanidins and prodelphinidins to cyanidins and delphinidins. Phytochemistry 25:223–230. Search in Google Scholar

Richter, B.E., Jones, B.A., Ezzell, J.L., Porter, N.L., Avdalovic, N., Pohl, C. (1996) Accelerated solvent extraction: a technique for sample preparation. Anal. Chem. 68:1033–1039. Search in Google Scholar

Santana, C.M., Ferrera, Z.S., Padrón, M.E.T., Rodríguez, J.J.S. (2009) Methodologies for the extraction of phenolic compounds from environmental samples: new approaches. Molecules 14:298–320. Search in Google Scholar

Savory, J.G. (1954) Damage to wood caused by micro-organisms. J. Appl. Microbiol. 17:213–218. Search in Google Scholar

Scalbert, A. (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883. Search in Google Scholar

Scalbert, A., Cahill, D., Dirol, D., Navarrete, M.-A., de Troya, M.-T., Van Leemput, M. (1998) A tannin/copper preservation treatment for wood. Holzforschung 52:133–138. Search in Google Scholar

Schmidt, O. (2007) Indoor wood-decay basidiomycetes: damage, causal fungi, physiology, identification and characterization, prevention and control. Mycol. Prog. 6:261–279. Search in Google Scholar

Seigler, D.S. Plant Secondary Metabolism. Boston, Kluwer Academic Publishers, 1998. Search in Google Scholar

Smeds, A.I., Eklund, P.C., Monogioudi, E., Willför, S.M. (2011) Chemical characterization of polymerized products formed in the reactions of matairesinol and pinoresinol with the stable radical 2,2-diphenyl-1-picrylhydrazyl. Holzforschung 66:283–294. Search in Google Scholar

Telysheva, G., Dizhbite, T., Bikovens, O., Ponomarenko, J., Janceva, S., Krasilnikova, J. (2011) Structure and antioxidant activity of diarylheptanoids extracted from bark of grey alder (Alnus incana) and potential of biorefinery-based bark processing of European trees. Holzforschung 65:623–629. Search in Google Scholar

Tondi, G., Wieland, S., Lemenager, N., Petutschnigg, A., Pizzi, A., Thevenon, M.-F. (2012) Efficacy of tannin in fixing boron in wood: fungal and termite resistance. BioResources 7:1238–1252. Search in Google Scholar

Willför, S., Nisula, L., Hemming, J., Reunanen, M., Holmbom, B. (2004) Bioactive phenolic substances in industrially important tree species. Part 2: knots and stemwood of fir species. Holzforschung 58:650–659. Search in Google Scholar

Yamaguchi, H., Okuda, K. (1998) Chemically modified tannin and tannin-copper complexes as wood preservatives. Holzforschung 52:596–602. Search in Google Scholar

Yao, L.-N. Su, Y.-F., Yin, Z.-Y., Qin, N., Li, T.-X., Si, C.-L., Liu, E.-W., Gao, X.-M. (2010) A new phenolic glucoside and flavonoids from the bark of Eucommia ulmoides Oliv. Holzforschung 64:571–575. Search in Google Scholar

Zulaica-Villagomez, H., Peterson, D.M., Herrin, L., Young, R.A. (2005) Antioxidant activity of different components of pine species. Holzforschung 59:156–162. Search in Google Scholar

Received: 2012-9-21
Accepted: 2013-1-29
Published Online: 2013-02-27
Published in Print: 2013-10-01

©2013 by Walter de Gruyter Berlin Boston