Abstract
The antioxidant, anti-inflammatory, antivirus, uric acid decreasing, and hepatoprotective activities of Acaciaconfusa extracts were demonstrated in previous studies. However, there is no scientific evidence concerning the immune-regulatory activity of the heartwood extract of A. confusa. In this study, the effect of a methanolic heartwood extract (MHE) from A. confusa on dendritic cell (DC) activation and function was examined. A. confusa MHE significantly reduced the production of pro-inflammatory cytokine interleukin-6 (IL-6) in lipopolysaccharide (LPS)-stimulated DCs, and the effective concentration (25 μg ml-1) of A. confusa MHE did not affect cell viability. Additionally, the bioactive phytochemical from A. confusa MHE, melanoxetin, was isolated and purified by HPLC. This substance inhibited the production of pro-inflammatory cytokines (tumor necrosis factor-α, IL-6, and IL-12) in LPS-stimulated DC at a concentration of 12.5 μM. Moreover, the expression levels of co-stimulatory molecules such as CD40, CD80, and CD86 also remarkably decreased after treatment with melanoxetin at the same dose. These findings indicate that A. confusa MHE and melanoxetin have excellent immune-suppressive activity and may be potential candidates for further development of natural health supplements.
References
Anttila, A.K., Pirttilä, A.M., Häggman, H., Harju, A., Venäläinen, M., Haapala, A., Holmbom, B., Julkunen-Tiitto, R. (2013) Condensed conifer tannins as antifungal agents in liquid culture. Holzforschung 67:825–832.10.1515/hf-2012-0154Search in Google Scholar
Banchereau, J., Steinman, R.M. (1998) Dendritic cells and the control of immunity. Nature 392:245–252.10.1038/32588Search in Google Scholar PubMed
Benavente-García, O., Castillo, J. (2008) Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem. 56:6185–6205.10.1021/jf8006568Search in Google Scholar PubMed
Chien, S.C., Xiao, J.H., Tseng, Y.H., Kuo, Y.H., Wang, S.Y. (2013) Composition and antifungal activity of balsam from Liquidambar formosana Hance. Holzforschung 67:345–351.10.1515/hf-2012-0086Search in Google Scholar
Chu, C.L., Lowell, C.A. (2005) The Lyn tyrosine kinase differentially regulates dendritic cell generation and maturation. J. Immunol. 175:2880–2889.10.4049/jimmunol.175.5.2880Search in Google Scholar PubMed
Clark-Lewis, J.W., Porter, L.J. (1972) Phytochemical survey of the heartwood flavonoids of Acacia species from arid zones of Australia. Aust. J. Chem. 25:1943–1955.Search in Google Scholar
Dalod, M., Chelbi, R., Malissen, B., Lawrence, T. (2014) Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming. EMBO J. 33:1104–1116.10.1002/embj.201488027Search in Google Scholar PubMed PubMed Central
Dongmo, A.B., Miyamoto, T., Yoshikawa, K., Arihara, S., Lacaille-Dubois, M.A. (2007) Flavonoids from Acacia pennata and their cyclooxygenase (COX-1 and COX-2) inhibitory activities. Planta Med. 73:1202–1207.10.1055/s-2007-981596Search in Google Scholar PubMed
Galleano, M., Calabro, V., Prince, P.D., Litterio, M.C., Piotrkowski, B., Vazquez-Prieto, M.A., Miatello, R.M., Oteiza, P.I., Fraga, C.G. (2012) Flavonoids and metabolic syndrome. Ann. N. Y. Acad. Sci. 1259:87–94.Search in Google Scholar
Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C., Amigorena, S. (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20:621–667.10.1146/annurev.immunol.20.100301.064828Search in Google Scholar PubMed
Horstmann, B., Zinser, E., Turza, N., Kerek, F., Steinkasserer, A. (2007) MCS-18, a novel natural product isolated from Helleborus purpurascens, inhibits dendritic cell activation and prevents autoimmunity as shown in vivo using the EAE model. Immunobiology 212:839–853.10.1016/j.imbio.2007.09.016Search in Google Scholar PubMed
Hua, C., Yang, Y., Sun, L., Dou, H., Tan, R., Hou, Y. (2013) Chaetoglobosin F, a small molecule compound, possesses immunomodulatory properties on bone marrow-derived dendritic cells via TLR9 signaling pathway. Immunobiology 218:292–302.10.1016/j.imbio.2012.05.015Search in Google Scholar PubMed
Huang, R.Y., Yu, Y.L., Cheng, W.C., OuYang, C.N., Fu, E., Chu, C.L. (2010) Immunosuppressive effect of quercetin on dendritic cell activation and function. J. Immunol. 184:6815–6821.10.4049/jimmunol.0903991Search in Google Scholar PubMed
Johnson, D.J., Ohashi, P.S. (2013) Molecular programming of steady-state dendritic cells: impact on autoimmunity and tumor immune surveillance. Ann. N. Y. Acad. Sci. 1284:46–51.Search in Google Scholar
Kadir, R., Ali, N.M., Soit, Z., Khamaruddin, Z. (2014) Anti-termitic potential of heartwood and bark extract and chemical compounds isolated from Madhuca utilis Ridl. H. J. Lam and Neobalanocarpus heimii King P. S. Ashton. Holzforschung 68:713–720.10.1515/hf-2013-0101Search in Google Scholar
Karlsson, A., Nygren, E., Karlsson, J., Nordström, I., Dahlgren, C., Eriksson, K. (2007) Ability of monocyte-derived dendritic cells to secrete oxygen radicals in response to formyl peptide receptor family agonists compared to that of myeloid and plasmacytoid dendritic cells. Clin. Vaccine Immunol. 14:328–330.10.1128/CVI.00349-06Search in Google Scholar PubMed PubMed Central
Lee, T.H., Chou, C.H. (2000) Flavonoid aglycones and indole alkaloids from root of Acacia confusa. J. Chin. Chem. Soc. 47:1287–1290.Search in Google Scholar
Lee, T.H., Qiu, F., Waller, G.R., Chou, C.H. (2000) Three new flavonol galloylglycosides from leaves of Acacia confusa. J. Nat. Prod. 63:710–712.Search in Google Scholar
Lee, J.C., Chen, W.C., Wu, S.F., Tseng, C.K., Chiou, C.Y., Chang, F.R., Hsu, S.H., Wu, Y.C. (2011) Anti-hepatitis C virus activity of Acacia confusa extract via suppressing cyclooxygenase-2. Antiviral Res. 89:35–42.10.1016/j.antiviral.2010.11.003Search in Google Scholar PubMed
Lin, C.C., Yu, Y.L., Shih, C.C., Liu, K.J., Ou, K.L., Hong, L.Z., Chen, J.D., Chu, C.L. (2011a) A novel adjuvant Ling Zhi-8 enhances the efficacy of DNA cancer vaccine by activating dendritic cells. Cancer Immunol. Immunother. 60:1019–1027.10.1007/s00262-011-1016-4Search in Google Scholar PubMed
Lin, M.K., Yu, Y.L., Chen, K.C., Chang, W.T., Lee, M.S., Yang, M.J., Cheng, H.C., Liu, C.H., Chen, D.C., Chu, C.L. (2011b) Kaempferol from Semen cuscutae attenuates the immune function of dendritic cells. Immunobiology 216:1103–1109.10.1016/j.imbio.2011.05.002Search in Google Scholar PubMed
Lin, C.C., Chu, C.L., Ng, C.S., Lin, C.Y., Chen, D.Y., Pan, I.H., Huang, K.J. (2014) Immunomodulation of phloretin by impairing dendritic cell activation and function. Food Funct. 5:997–1006.10.1039/c3fo60548eSearch in Google Scholar PubMed
Makino, R., Ohara, S., Hashida, K. (2011) Radical scavenging characteristics of condensed tannins from barks of various tree species compared with quebracho wood tannin. Holzforschung 65:651–657.10.1515/hf.2011.086Search in Google Scholar
Miller, A.K., Benson, J.M., Muanza, D.N., Smith, J.R., Shepherd, D.M. (2011) Anti-inflammatory effects of natural product formulations on murine dendritic cells. J. Diet. Suppl. 8:19–33.Search in Google Scholar
Pietarinen, S.P., Willför, S.M., Sjöholm, R.E., Holmbom, B.R. (2005) Bioactive phenolic substances in important tree species. Part 3: Knots and stemwood of Acacia crassicarpa and A. mangium. Holzfoschung 59:94–101.10.1515/HF.2005.015Search in Google Scholar
Rao, Y.K., Chen, Y.C., Fang, S.H., Lai, C.H., Geethangili, M., Lee, C.C., Tzeng, Y.M. (2013) Ovatodiolide inhibits the maturation of allergen-induced bone marrow-derived dendritic cells and induction of Th2 cell differentiation. Int. Immunopharmacol. 17:617–624.10.1016/j.intimp.2013.08.002Search in Google Scholar PubMed
Rosales-Castro, M., González-Laredo, R.F., Rocha-Guzmán, N.E., Gallegos-Infante, J.A., Rivas-Arreola, M.J., Karchesy, J.J. (2012) Antioxidant activity of fractions from Quercus sideroxyla bark and identification of proanthocyanidins by HPLC-DAD and HPLC-MS. Holzforschung 66:577–584.10.1515/hf-2011-0157Search in Google Scholar
Sharan, K., Mishra, J.S., Swarnkar, G., Siddiqui, J.A., Khan, K., Kumari, R., Rawat, P., Maurya, R., Sanyal, S., Chattopadhyay, N. (2011) A novel quercetin analogue from a medicinal plant promotes peak bone mass achievement and bone healing after injury and exerts an anabolic effect on osteoporotic bone: the role of aryl hydrocarbon receptor as a mediator of osteogenic action. J. Bone Miner. Res. 26:2096–2111.10.1002/jbmr.434Search in Google Scholar PubMed
Sheng, K.C., Pietersz, G.A., Tang, C.K., Ramsland, P.A., Apostolopoulos, V. (2010) Reactive oxygen species level defines two functionally distinctive stages of inflammatory dendritic cell development from mouse bone marrow. J. Immunol. 184: 2863–2872.10.4049/jimmunol.0903458Search in Google Scholar PubMed
Telysheva, G., Dizhbite, T., Bikovens, O., Ponomarenko, J., Janceva, S., Krasilnikova, J. (2011) Structure and antioxidant activity of diarylheptanoids extracted from bark of grey alder (Alnus incana) and potential of biorefinery-based bark processing of European trees. Holzforschung 65:623–629.10.1515/hf.2011.096Search in Google Scholar
Thieme, H., Khogali, A. (1975) The occurrence of flavonoids and tannins in the leaves of some African acacia species, Pharmazie. 30:736–743.Search in Google Scholar
Trucci, V.M., Salum, F.G., Figueiredo, M.A., Cherubini, K. (2013) Interrelationship of dendritic cells, type 1 interferon system, regulatory T cells and toll-like receptors and their role in lichen planus and lupus erythematosus – a literature review. Arch. Oral Biol. 58:1532–1540.10.1016/j.archoralbio.2013.06.016Search in Google Scholar PubMed
Tung, Y.T., Chang S.T. (2010a) Inhibition of xanthine oxidase by Acacia confusa extracts and their phytochemicals. J. Agric. Food Chem. 58:781–786.10.1021/jf901498qSearch in Google Scholar PubMed
Tung, Y.T., Chang S.T. (2010b) Variation in antioxidant activity of extracts of Acacia confusa of different ages. Nat. Prod. Commun. 5:73–76.10.1177/1934578X1000500118Search in Google Scholar
Tung, Y.T., Wu, J.H., Kuo, Y.H., Chang, S.T. (2007) Antioxidant activities of natural phenolic compounds from Acacia confusa bark. Bioresource Technol. 98:1120–1123.10.1016/j.biortech.2006.04.017Search in Google Scholar PubMed
Tung, Y.T., Wu, J.H., Huang, C.C., Peng, H.C., Chen, Y.L., Yang, S.C., Chang, S.T. (2009a) Protective effect of Acacia confusa bark extract and its active compound gallic acid against carbon tetrachloride-induced chronic liver injury in rats. Food Chem. Toxicol. 7:1385–1392.10.1016/j.fct.2009.03.021Search in Google Scholar PubMed
Tung, Y.T., Wu, J.H., Hsieh, C.Y., Chen, P.S., Chang, S.T. (2009b) Free radical-scavenging phytochemicals of hot water extracts of Acacia confusa leaves detected by on-line screening method. Food Chem. 115:1019–1024.10.1016/j.foodchem.2009.01.026Search in Google Scholar
Tung, Y.T., Wu, J.H., Huang, C.Y., Kuo, Y.H., Chang S.T. (2009c) Antioxidant activities and phytochemical characteristics of extracts from Acacia confusa bark. Bioresource Technol. 100:509–514.10.1016/j.biortech.2008.01.001Search in Google Scholar PubMed
Tung, Y.T., Hsu, C.A., Chen, C.S., Yang, S.C., Huang, C.C., Chang, S.T. (2010) Phytochemicals from Acacia confusa heartwood extracts reduce serum uric acid levels in oxonate-induced mice: their potential use as xanthine oxidase inhibitors. J. Agric. Food Chem. 58:9936–9941.10.1021/jf102689kSearch in Google Scholar PubMed
Tung, Y.T., Chang, W.C., Chen, P.S., Chang, T.C., Chang S.T. (2011) Ultrasound-assisted extraction of phenolic antioxidants from Acacia confusa flowers and buds. J. Sep. Sci. 34:844–851.Search in Google Scholar
Uto, T., Nishi, Y., Toyama, M., Yoshinaga, K., Baba, M. (2011) Inhibitory effect of cepharanthine on dendritic cell activation and function. Int. Immunopharmacol. 11:1932–1938.10.1016/j.intimp.2011.08.003Search in Google Scholar PubMed
Verhasselt, V., Vanden Berghe, W., Vanderheyde, N., Willems, F., Haegeman, G., Goldman, M. (1999) N-acetyl-l-cysteine inhibits primary human T cell responses at the dendritic cell level: association with NF-kappa B inhibition. J. Immunol. 162:2569–2574.10.4049/jimmunol.162.5.2569Search in Google Scholar
Welch, A., MacGregor, A., Jennings, A., Fairweather-Tait, S., Spector, T., Cassidy, A. (2012) Habitual flavonoid intakes are positively associated with bone mineral density in women. J. Bone Miner. Res. 27:1872–1878.Search in Google Scholar
Wu, J.H., Tung, Y.T., Wang, S.Y., Shyur, L.F., Kuo, Y.H., Chang S.T. (2005) Phenolic antioxidants from the heartwood of Acacia confusa. J. Agric. Food Chem. 53:5917–5921.10.1021/jf050550mSearch in Google Scholar PubMed
Wu, J.H., Huang, C.Y., Tung, Y.T., Chang, S.T. (2008a) Online RP-HPLC-DPPH screening method for detection of radical-scavenging phytochemicals from flowers of Acacia confusa. J. Agric. Food Chem. 56:328–532.10.1021/jf072314cSearch in Google Scholar PubMed
Wu, J.H., Tung, Y.T., Chien, S.C., Wang, S.Y., Kuo, Y.H., Shyur, L.F., Chang, S.T. (2008b) Effect of phytocompounds from the heartwood of Acacia confusa on inflammatory mediator production. J. Agric. Food Chem. 56:1567–1573.10.1021/jf072922sSearch in Google Scholar PubMed
Xuan, N.T., Shumilina, E., Gulbins, E., Gu, S., Götz, F., Lang, F. (2010) Triggering of dendritic cell apoptosis by xanthohumol. Mol. Nutr. Food Res. 54:S214–224.10.1002/mnfr.200900324Search in Google Scholar PubMed
©2015 by De Gruyter