Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 12, 2015

Capillary pore-size distribution and equilibrium moisture content of wood determined by means of pressure plate technique

  • Mario Zauer EMAIL logo , Frank Meissner , Rudolf Plagge and André Wagenführ
From the journal Holzforschung


This paper deals with the determination of the capillary pore-size distribution (CPSD) and equilibrium moisture content (EMC) of untreated and thermally modified (TM) Norway spruce [Picea abies (L.) Karst.] by means of the pressure plate technique (PPT). Desorption experiments were conducted at very high values of relative humidity (RH) in the range between 99.2% and 100%. The thermal modification of spruce results in an alteration of the CPSD, owing to the formation of intercellular cracks in the middle lamella, as a result of cell-wall compression. The desorption curves for both untreated and TM spruce show an extremely upward bend at 99.97% RH. This step reflects an EMC of 38.1% for untreated spruce and 33.8% for TM spruce. None of the samples shrunk during the PPT measurements. Following desorption experiments at 97.4% RH, all samples shrunk. This step reflects an EMC of 27.9% for untreated spruce and 21.7% for TM spruce.

Corresponding author: Mario Zauer, Institute of Wood and Paper Technology, Technische Universität Dresden, 01062 Dresden, Germany, e-mail:


The authors wish to thank Ernst Bäucker (Institute of Forest Utilization and Forest Technology, Technische Universität Dresden) for the excellent SEM images.


Almeida, G., Hernández, R. (2006a) Changes in physical properties of yellow birch below and above the fiber saturation point. Wood Fiber Sci. 38:74–83.Search in Google Scholar

Almeida, G., Hernández, R.E. (2006b) Changes in physical properties of tropical and temperate hardwoods below and above the fiber saturation point. Wood Sci. Technol. 40:599–613.10.1007/s00226-006-0083-8Search in Google Scholar

Bosshard, H.H. Holzkunde. Mikroskopie des Holzes. Birkhäuser Verlag, Basel und Stuttgart, 1974.10.1007/978-3-0348-5323-1Search in Google Scholar

Borrega, M., Niemelä, K., Sixta, H. (2013) Effect of hydrothermal treatment intensity on the formation of degradation products from birchwood. Holzforschung 67:871–879.10.1515/hf-2013-0019Search in Google Scholar

Cloutier, A., Fortin, Y. (1991) Moisture content – water potential relationship of wood from saturated to dry conditions. Wood Sci. Technol. 25:263–280.Search in Google Scholar

Dullien, F.A.L. Porous Media – Fluid Transport and Pore Structure. Academic Press, Inc., San Diego, CA. 1992.10.1016/B978-0-12-223651-8.50007-9Search in Google Scholar

Engelund, E.T., Thygesen, L.G., Svensson, S., Hill, C.A.S. (2013) A critical discussion of the physics of wood-water interactions. Wood Sci. Technol. 47:141–161.Search in Google Scholar

Fahlén, J., Salmén, L. (2005) Ultrastructural changes in a holocellulose pulp revealed by enzymes, thermoporosimetry and atomic force microscopy. Holzforschung 59:589–597.10.1515/HF.2005.096Search in Google Scholar

Fengel, D. (1966) Über die Veränderungen des Holzes und seiner Komponenten im Temperaturbereich bis 200°C – Dritte Mitteilung: thermisch und mechanisch bedingte Strukturänderungen bei Fichtenholz. Holz Roh Werkst. 24:529–536.10.1007/BF02610356Search in Google Scholar

Fengel, D., Wegener, G. Wood: Chemistry, Ultrastructure, Reaction. Verlag Kessel, München, 2003.Search in Google Scholar

Griffin, D.M. (1977) Water potential and wood-decay fungi. Annu. Rev. Phytopathol. 15:319–329.10.1146/ in Google Scholar

ISO 12571 (2013) Hygrothermal performance of building materials and products. Determination of hygroscopic sorption properties.Search in Google Scholar

ISO 11274 (2014) Soil quality. Determination of the water-retention characteristic. Laboratory methods.Search in Google Scholar

Junghans, K., Niemz, P., Bächle, F. (2005) Untersuchungen zum Einfluss der thermischen Vergütung auf die Porosität von Fichtenholz. Holz Roh Werkst. 63:243–244.10.1007/s00107-004-0553-3Search in Google Scholar

Liese, W., Fahnenbrock, M. (1952) Elektronenmikroskopische Untersuchungen über den Bau der Hoftüpfel. Holz Roh Werkst. 10:197–201.10.1007/BF02605534Search in Google Scholar

Olek, W., Bonarski, J.T. (2014) Effects of thermal modification on wood ultrastructure analyzed with crystallographic texture. Holzforschung 68:721–726.10.1515/hf-2013-0165Search in Google Scholar

Plötze, M., Niemz, P. (2011) Porosity and pore size distribution of different wood types as determined by mercury intrusion porosimetry. Eur. J. Wood Prod. 69:649–657.10.1007/s00107-010-0504-0Search in Google Scholar

Pfriem, A. (2011) Alteration of water absorption coefficient of spruce (Picea abies (L.) Karst.) due to thermal modification. Drvna Ind. 62:311–313.10.5552/drind.2011.1109Search in Google Scholar

Pfriem, A., Zauer, M., Wagenführ, A. (2009) Alteration of the pore structure of spruce (Picea abies (L.) Karst.) and maple (Acer pseudoplatanus L.) due to thermal treatment as determined by helium pycnometry and mercury intrusion porosimetry. Holzforschung 63:94–98.10.1515/HF.2009.027Search in Google Scholar

Pfriem, A., Zauer, M., Wagenführ, A. (2010) Alteration of the unsteady sorption behaviour of maple (Acer pseudoplatanus L.) and spruce (Picea abies (L.) Karst.) due to thermal modification. Holzforschung 64:235–241.10.1515/hf.2010.029Search in Google Scholar

Repellin, V., Guyonnet, R. (2005) Evaluation of heat-treated wood swelling by differential scanning calorimetry in relation to chemical composition. Holzforschung 59:28–34.10.1515/HF.2005.005Search in Google Scholar

Rosenthal, M., Bäucker, E., Bues, C.T. (2010) Holzaufbau und Tränkbarkeit: Zum Einfluss der Mikrostruktur des Holzes auf das Eindringverhalten von Flüssigkeiten. Holz-Zentralblatt 34:852–854.Search in Google Scholar

Scheffler, G.A. (2008) Validation of hygrothermal material modelling under consideration of the hysteresis of moisture storage. Doctoral thesis. TU Dresden.Search in Google Scholar

Siau, J. Wood: Influence of Moisture on Physical Properties. Virginia Polytechnic Institute and State University, Virginia, 1995.Search in Google Scholar

Skaar, C. Wood-Water Relations. Springer-Verlag, Berlin, 1988.10.1007/978-3-642-73683-4Search in Google Scholar

Stamm, A.J. (1967) Movement of fluids in wood. Part I: flow of fluids in wood. Wood Sci. Technol. 1:122–141.Search in Google Scholar

Stamm, A.J. (1971) A review of nine methods for determining the fiber saturation points of wood and wood products. Wood Sci. 4:114–128.Search in Google Scholar

Stone, J.E., Scallan, A.M. (1967) The effect of component removal upon the porous structure of the cell wall of wood. II. Swelling in water and the fiber saturation point. Tappi 50:496–501.Search in Google Scholar

Thygesen, L.G., Hansen, K.K. (2007) Improved suction technique for the characterization of construction materials. J. ASTM Int. 4:1–9.10.1520/STP45401SSearch in Google Scholar

Thygesen, L.G., Engelund, E.T., Hoffmeyer, P. (2010) Water sorption in wood and modified wood at high values of relative humidity. Part I: results for untreated, acetylated, and furfurylated Norway spruce. Holzforschung 64:315–323.10.1515/hf.2010.044Search in Google Scholar

Tiemann, H.D. (1906) Effect of moisture on the strength and stiffness of wood. USDA For. Serv. Bull. 70.Search in Google Scholar

Tremblay, C., Cloutier, A., Fortin, Y. (1996) Moisture content-water potential relationship of red pine sapwood above the fiber saturation point and determination of the effective pore size distribution. Wood Sci. Technol. 30:361–371.10.1007/BF00223556Search in Google Scholar

Wagenführ, R. Anatomie des Holzes. DRW-Verlag, Leinfelden-Echterdingen, 1999.Search in Google Scholar

Wagenführ, R. Holzatlas. Carl Hanser Verlag, München, 2007.Search in Google Scholar

Wang, J., Mukhopadhyaya, P., Morris, P.I. (2014) Sorption and capillary condensation in wood and the moisture content of red pine. J. Build. Phys. 37:327–347.Search in Google Scholar

Windeisen, E., Strobel, C., Wegener, G. (2007) Chemical changes during the production of thermo-treated beech wood. Wood Sci. Technol. 41:523–536.Search in Google Scholar

Zauer, M., Pfriem, A., Wagenführ, A. (2013) Toward improved understanding of the cell-wall density and porosity of wood determined by gas pycnometry. Wood Sci. Technol. 47:1197–1211.Search in Google Scholar

Zauer, M., Kretzschmar, J. Großmann, L., Pfriem, A., Wagenführ, A. (2014a) Analysis of the pore-size distribution and fiber saturation point of native and thermally modified wood using differential scanning calorimetry. Wood Sci. Technol. 48:177–193.10.1007/s00226-013-0597-9Search in Google Scholar

Zauer, M., Hempel, S., Pfriem, A., Mechtcherine, V., Wagenführ, A. (2014b) Investigations of the pore-size distribution of wood in the dry and wet state by means of mercury intrusion porosimetry. Wood Sci. Technol. 48:1229–1240.10.1007/s00226-014-0671-ySearch in Google Scholar

Received: 2014-11-17
Accepted: 2015-2-17
Published Online: 2015-3-12
Published in Print: 2016-2-1

©2016 by De Gruyter

Downloaded on 1.4.2023 from
Scroll to top button