Abstract
Kraft lignin (KL), a by-product in the pulping and papermaking industry, is an abundant, renewable resource. In this work, nanosphere formation of KL has been investigated via self-assembly induced by adding water to a KL/dioxane solution. The KL nanospheres were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (dynLS) and static light scattering (statLS). It was found that the nanoparticles have uniform nanospherical morphologies, including a small hollow cavity space in the interior. The π-π interactions between the aromatic rings of KL are demonstrated to be an important driving force in the self-assembly process. The KL nanosphere sizes can vary by hundreds of nanometers depending upon the preparation conditions. These newly obtained KL nanospheres have the advantages of biocompatibility, biodegradability, low toxicity, easy preparation, and low cost. Thus KL nanospheres are attractive for applications in life science, medicine, biology, food science, and agriculture. This approach presented here is an economically feasible and facile strategy for the sustainable utilization of kraft lignin.
Acknowledgments
The work was supported by the National Basic Research Program of China (973 Program) (2012CB215302), the State Key Program of National Natural Science of China (21436004), and the National Natural Science Foundation of China (21374032).
References
Azadi, P., Inderwildi, O.R., Farnood, R., King, D.A. (2013) Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renew. Sust. Energy Rev. 21:506–523.10.1016/j.rser.2012.12.022Search in Google Scholar
Brodin, I., Ernstsson, M., Gellerstedt, G., Sjöholm, E. (2012) Oxidative stabilisation of kraft lignin for carbon fibre production. Holzforschung 66:141–147.10.1515/HF.2011.133Search in Google Scholar
Cameron, N.S., Corbierre, M.K., Eisenberg, A. (1999) 1998 EWR Steacie Award Lecture Asymmetric amphiphilic block copolymers in solution: a morphological wonderland. Can. J. Chem. 77:1311–1326.10.1139/v99-141Search in Google Scholar
Chakar, F.S., Ragauskas, A.J. (2004) Review of current and future softwood kraft lignin process chemistry. Ind. Crops Prod. 20:131–141.10.1016/j.indcrop.2004.04.016Search in Google Scholar
Deng, Y., Wu, Y., Qian, Y., Ouyang, X., Yang, D., Qiu, X. (2010) Adsorption and desorption behaviors of Lignosulfonate during the self-assembly of multilayers. Bioresources 5:1178–1196.Search in Google Scholar
Deng, Y., Feng, X., Zhou, M., Qian, Y., Yu, H., Qiu, X. (2011) Investigation of aggregation and assembly of alkali lignin using iodine as a probe. Biomacromolecules 12:1116–1125.10.1021/bm101449bSearch in Google Scholar PubMed
Deng, Y., Feng, X., Yang, D., Yi, C., Qiu, X. (2012) π-π stacking of the aromatic groups in lignosulfonates. Bioresources 7:1145–1156.Search in Google Scholar
Doherty, W.O., Mousavioun, P., Fellows, C.M. (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind. Crops Prod. 33:259–276.10.1016/j.indcrop.2010.10.022Search in Google Scholar
Duan, H., Chen, D., Jiang, M., Gan, W., Li, S., Wang, M., Gong, J. (2001) Self-assembly of unlike homopolymers into hollow spheres in nonselective solvent. J. Am. Chem. Soc. 123:12097–12098.10.1021/ja011502vSearch in Google Scholar PubMed
Engelmann, G., Ganster, J. (2014) Bio-based epoxy resins with low molecular weight kraft lignin and pyrogallol. Holzforschung 68:435–446.10.1515/hf-2013-0023Search in Google Scholar
Fang, Y., Zheng, G., Yang, J., Tang, H., Zhang, Y., Kong, B., Lv, Y., Xu, C., Asiri, A.M., Zi, J., Zhang, F., Zhao, D. (2014) Dual-pore mesoporous carbon@silica composite core–shell nanospheres for multidrug delivery. Angew. Chem. Int. Ed. 126:5470–5474.10.1002/ange.201402002Search in Google Scholar
Fernández-Pérez, M., Flores-Céspedes, F., Daza-Fernández, I., Vidal-Peña, F., Villafranca-Sánchez, M. (2014) Lignin and lignosulfonate-based formulations to protect pyrethrins against photodegradation and volatilization. Ind. Eng. Chem. Res. 53:13557–13564.10.1021/ie500186eSearch in Google Scholar
Gan, L., Zhou, M., Yang, D., Qiu, X. (2013) Aggregation and adsorption behaviors of carboxymethylated lignin (CML) in aqueous solution. Holzforschung 67:379–385.10.1515/hf-2012-0119Search in Google Scholar
Gellerstedt, G., Lindfors, E. (1984) Structural changes in lignin during kraft pulping. Holzforschung 38:151–158.10.1515/hfsg.1984.38.3.151Search in Google Scholar
Harris, N., Ford, M.J., Cortie, M.B. (2006) Optimization of plasmonic heating by gold nanospheres and nanoshells, J. Phys. Chem. B. 110:10701–10707.10.1021/jp0606208Search in Google Scholar
Horn, D., Rieger, J. (2001) Organic nanoparticles in the aqueous phase – theory, experiment, and use. Angew. Chem. Int. Ed. 40:4330–4361.10.1002/1521-3773(20011203)40:23<4330::AID-ANIE4330>3.0.CO;2-WSearch in Google Scholar
Ikkala, O., Ten Brinke, G. (2002) Functional materials based on self-assembly of polymeric supramolecules. Science 295:2407–2409.10.1126/science.1067794Search in Google Scholar
Kataoka, K., Harada, A., Nagasaki, Y. (2012) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Delivery Rev. 64:37–48.10.1016/j.addr.2012.09.013Search in Google Scholar
Košíková, B., Lábaj, J., Gregorová, A., Slameňová, D. (2006) Lignin antioxidants for preventing oxidation damage of DNA and for stabilizing polymeric composites. Holzforschung 60:166–170.10.1515/HF.2006.027Search in Google Scholar
Letchford, K., Burt, H. (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm. 65, 259–269.10.1016/j.ejpb.2006.11.009Search in Google Scholar
Li, H., Deng, Y., Ye, H., Xiao, L., Qiu, X. (2014) Effect of temperature on polyelectrolyte expansion of lignosulfonate. Bioresources 10:575–587.10.15376/biores.10.1.575-587Search in Google Scholar
Lievonen, M., Valle-Delgado, J.J., Mattinen, M., Hult, E., Lintinen, K., Kostiainen, M.A., Paananen, A., Szilvay, G.R., Setäläb, H., Österberg, M. (2016) A simple process for lignin nanoparticle preparation. Green Chem. 10.1039/C5GC01436K.Search in Google Scholar
Lou, H., Lai, H., Wang, M., Pang, Y., Yang, D., Qiu, X., Wang, B., Zhang, H. (2013) Preparation of lignin-based superplasticizer by graft sulfonation and investigation of the dispersive performance and mechanism in a cementitious system. Ind. Eng. Chem. Res. 52:16101–16109.10.1021/ie402169gSearch in Google Scholar
Lu, B., An, S., Song, D., Su, F., Yang, X., Guo, Y. (2015) Design of organosulfonic acid functionalized organosilica hollow nanospheres for efficient conversion of furfural alcohol to ethyl levulinate. Green Chem. 17:1767–1778.10.1039/C4GC02161DSearch in Google Scholar
Mohanpuria, P., Rana, N.K., Yadav, S.K. (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J. Nanopart. Res. 10:507–517.10.1007/s11051-007-9275-xSearch in Google Scholar
Nie, Z., Petukhova, A., Kumacheva, E. (2009) Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 5:15–25.10.1038/nnano.2009.453Search in Google Scholar PubMed
Peng, H., Chen, D., Jiang, M. (2003) Self-assembly of formic acid/polystyrene-block-poly (4-vinylpyridine) complexes into vesicles in a low-polar organic solvent chloroform. Langmuir 19:10989–10992.10.1021/la0348721Search in Google Scholar
Qian, Y., Deng, Y., Li, H., Qiu, X. (2014a) Reaction-free lignin whitening via a self-assembly of acetylated lignin. Ind. Eng. Chem. Res. 53:10024–10028.10.1021/ie5010338Search in Google Scholar
Qian, Y., Deng, Y., Qiu, X., Li, H., Yang, D. (2014b) Formation of uniform colloidal spheres from lignin, a renewable resource recovered from pulping spent liquor. Green Chem. 16:2156–2163.10.1039/c3gc42131gSearch in Google Scholar
Qian, Y., Qiu, X., Zhu, S. (2015) Lignin: a nature-inspired sun blocker for broad-spectrum sunscreens. Green Chem. 17:320–324.10.1039/C4GC01333FSearch in Google Scholar
Sarkanen, S., Teller, D.C., Abramowski, E., McCarthy, J.L. (1982) Lignin. 19. Kraft lignin component conformation and associated complex configuration in aqueous alkaline solution. Macromolecules 15:1098–1104.10.1021/ma00232a027Search in Google Scholar
Sarkanen, S., Teller, D.C., Stevens, C.R., McCarthy, J.L. (1984) Lignin. 20. Associative interactions between kraft lignin components. Macromolecules 17:2588–2597.10.1021/ma00142a022Search in Google Scholar
Shen, Q., Rosenholm, J.B. (1998) Kraft black liquors properties in relation to delignification. Nord. Pulp. Pap. Res. J. 13:206–210.10.3183/npprj-1998-13-03-p206-210Search in Google Scholar
Song, E., Wang, G., Xie, H., Zhang, Z., Hu, J., Peng, J., Wu, D., Shi, Y., Pang, D. (2007) Visual recognition and efficient isolation of apoptotic cells with fluorescent-magnetic-biotargeting multifunctional nanospheres. Clin. Chem. 53:2177–2185.10.1373/clinchem.2007.092023Search in Google Scholar PubMed
Stewart, D. (2008) Lignin as a base material for materials applications: chemistry, application and economics. Ind. Crops Prod. 27:202–207.10.1016/j.indcrop.2007.07.008Search in Google Scholar
Strassberger, Z., Tanase, S., Rothenberg, G. (2014) The pros and cons of lignin valorisation in an integrated biorefinery. RSC Adv. 4:25310–25318.10.1039/C4RA04747HSearch in Google Scholar
Vriezema, D.M., Comellas Aragonès, M., Elemans, J.A., Cornelissen, J.J., Rowan, A.E., Nolte, R.J. (2005) Self-assembled nanoreactors. Chem. Rev. 105:1445–1490.10.1021/cr0300688Search in Google Scholar PubMed
Wang, G., Henselwood, F., Liu, G. (1998) Water-Soluble Poly(2-cinnamoylethyl methacrylate)-block-poly(acrylic acid) nanospheres as traps for perylene. Langmuir 14:1554–1559.10.1021/la970769ySearch in Google Scholar
Werhan, H., Mir, J.M., Voitl, T., Rudolf Von Rohr, P. (2011) Acidic oxidation of kraft lignin into aromatic monomers catalyzed by transition metal salts. Holzforschung 65:703–709.10.1515/hf.2011.071Search in Google Scholar
Yao, X., Chen, D., Jiang, M. (2004) Formation of PS-b-P4VP/formic acid core-shell micelles in chloroform with different core densities. J. Phys. Chem. B. 108:5225–5229.10.1021/jp038000jSearch in Google Scholar
Zhou, M., Kong, Q., Pan, B., Qiu, X., Yang, D., Lou, H. (2010) Evaluation of treated black liquor used as dispersant of concentrated coal-water slurry. Fuel 89:716–723.10.1016/j.fuel.2009.09.015Search in Google Scholar
©2016 Walter de Gruyter GmbH, Berlin/Boston