Accessible Requires Authentication Published by De Gruyter November 16, 2016

COST-FP1105: Properties of PLA films reinforced with unmodified and acetylated freeze dried nanofibrillated cellulose

Vesna Žepič, Ida Poljanšek, Primož Oven and Matjaž Čop
From the journal Holzforschung

Abstract

Freeze dried nanofibrils were acetylated in a heterogeneous system with acetic anhydride, pyridine, and dimethylformamide and the obtained acetylated cellulose nanofibrils (CNFac) were combined with poly(lactic acid) (PLA) to a composite. CNFac with its partially hydrophobic surface showed a good compatibility with PLA resulting in composite films with improved properties. Tensile strength (TS), modulus of elasticity (MOE), and elongation at break (EB) of PLA/CNF increased significantly when 2–5% of CNFac was added to the PLA matrix, while the addition of 10% and higher amounts CNFac decreased the EB at a higher TS and MOE. Mechanical parameters did not improve in the case of unmodified CNF addition. The addition of CNFac maintained transparency and had absorbance values between those of pure PLA film and PLA film with 2% CNF, while films formed with the addition of 5 and 10% of CNF were less transparent. The addition of CNF did not essentially affect the thermal properties of nanocomposite films. The addition of 2–10% of CNFac increased the enthalpy and maximal temperature of cold crystallization as opposed to higher loading of CNFac. The results of differential scanning calorimetry (DSC) coincide with those of the mechanical properties. Tailoring properties of PLA/CNF are only reproducible in case of homogenously distributed CNF within the PLA matrix and by an improved interphase adhesion between PLA and CNFac.

Acknowledgments

The authors wish to gratefully acknowledge the Ministry of Higher Education, Science and Technology of the Republic of Slovenia, within the Programs P4-0015. We would like to thank Erika Švara Fabjan from ZAG for FE-SEM images.

References

Abdul Khalil, H.P.S., Bhat, A.H., Ireana Yusra, A.F. (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr. Polym. 87:963–979. Search in Google Scholar

Abdulkhani, A., Hosseinzadeh, J., Ashori, A., Dadashi, S., Takzare, Z. (2014) Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym. Test. 35:73–79. Search in Google Scholar

Abdulkhani, A., Hosseinzadeh, J., Dadashi, S., Mousavi, M. (2015) A study of morphological, thermal, mechanical and barrier properties of PLA based biocomposites prepared with micro and nano sized cellulosic fibers. Cellulose Chem. Techn. 49:597–605. Search in Google Scholar

Arjmandi, R., Hassan, A., Eichhorn, S.J., Mohamad Haafiz, M.K., Zakaria, Z., Tanjung, F.A. (2015) Enhanced ductility and tensile properties of hybrid montmorillonite/cellulose nanowhiskers reinforced polylactic acid nanocomposites. J. Mat. Sci. 50:3118–3130. Search in Google Scholar

Arrieta, M.P., Fortunati, E., Dominici, F., Rayon, E., Lopez, J., Kenny, J.M. (2014) Multifunctional PLA-PHB/cellulose nanocrystal films: Processing, structural and thermal properties. Carbohydr. Polym. 107:16–24. Search in Google Scholar

Aulin, C., Karabulut, E., Amy, T., Wagberg, L., Lindstrom, T. (2013) Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties. ACS Appl. Mat. Interfaces 5:7352–7359. Search in Google Scholar

Baheti, V., Mishra, R., Militky, J., Behera, B.K. (2014) Influence of noncellulosic contents on nano scale refinement of waste jute fibers for reinforcement in polylactic acid films. Fiber. Polym. 15:1500–1506. Search in Google Scholar

Bulota, M., Kreitsmann, K., Hughes, M., Paltakari, J. (2012) Acetylated microfibrillated cellulose as a toughening agent in poly(lactic acid). J. Appl. Polym. Sci. 126:E449–E458. Search in Google Scholar

Chakraborty, A., Sain, M., Kortschot, M. (2006) Reinforcing potential of wood pulp-derived microfibres in a PVA matrix. Holzforschung 60:53–58. Search in Google Scholar

Cheng, Q., Wang, S., Rials, T.G. (2009) Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Compos. Part A. Appl. Sci. Manuf. 40:218–224. Search in Google Scholar

Cheng, Q., Wang, S., Rials, T.G., Lee, S.H. (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14:593–602. Search in Google Scholar

Deblieck, R.A.C., van Beek, D.J.M., Remerie, K., Ward, I.M. (2011) Failure mechanisms in polyolefines: The role of crazing, shear yielding and the entanglement network. Polymer 52:2979–2990. Search in Google Scholar

Dhar, P., Tarafder, D., Kumar, A., Katiyar, V. (2015) Effect of cellulose nanocrystal polymorphs on mechanical, barrier and thermal properties of poly(lactic acid) based bionanocomposites. RSC Adv. 5:60426–60440. Search in Google Scholar

Di Lorenzo, M.L. (2006) Calorimetric analysis of the multiple melting behavior of poly(L-lactic acid). J. Appl. Polym. Sci. 100:3145–3151. Search in Google Scholar

Espino-Perez, E., Bras, J., Ducruet, V., Guinault, A., Dufresne, A., Domenek, S. (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur. Polym. J. 49:3144–3154. Search in Google Scholar

Fischer, E.W., Sterzel, H.J., Wegner, G. (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid. Z. Z. Polym. 251:980–990. Search in Google Scholar

Fordyce, C.R., Genung, L.B., Pile, M.A. (1946) Composition of cellulose esters – use of equations and nomographs. Ind. Eng. Chem. Analytical Edition 18:547–550. Search in Google Scholar

Fortunati, E., Armentano, I., Zhou, Q., Iannoni, A., Saino, E., Visai, L., Berglund, L.A., Kenny, J.M. (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohyd. Polym. 87:1596–1605. Search in Google Scholar

Freire, C.S.R., Fernandes, S.C.M., Silvestre, A.J.D., Neto, C.P. (2013) Novel cellulose-based composites based on nanofibrillated plant and bacterial cellulose: recent advances at the University of Aveiro – a review. Holzforschung 67:603–612. Search in Google Scholar

Frone, A.N., Berlioz, S., Chailan, J.-F., Panaitescu, D.M. (2013) Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohyd. Polym. 91:377–384. Search in Google Scholar

Galeski, A. (2003) Strength and toughness of crystalline polymer systems. Prog. Polym. Sci. 28:1643–1699. Search in Google Scholar

Herrera, N., Mathew, A.P., Oksman, K. (2015) Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: Mechanical, thermal and optical properties. Compos. Sci. Technol. 106:149–155. Search in Google Scholar

Higgins, H.G., Stewart, C.M., Harrington, K.J. (1961) Infrared spectra of cellulose and related polysaccharides. J. Polym. Sci. 51:59–84. Search in Google Scholar

Hill, C.A.S., Jones, D., Strickland, G., Cetin, N.S. (1998) Kinetic and mechanistic aspects of the acetylation of wood with acetic anhydride. Holzforschung 52:623–629. Search in Google Scholar

Johari, A.P., Kurmvanshi, S.K., Mohanty, S., Nayak, S.K. (2016) Influence of surface modified cellulose microfibrils on the improved mechanical properties of poly (lactic acid). Int. J. Biol. Macromolec. 84:329–339. Search in Google Scholar

Lee, J.H., Park, S.H., Kim, S.H. (2014) Surface modification of cellulose nanowhiskers and their reinforcing effect in polylactide. Macromol. Res. 22:424–430. Search in Google Scholar

Liu, D.Y., Yuan, X.W., Bhattacharyya, D., Easteal, A.J. (2010) Characterisation of solution cast cellulose nanofibre-reinforced poly(lactic acid). Express. Polym. Lett. 4:26–31. Search in Google Scholar

Lu, J., Askeland, P., Drzal, L.T. (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296. Search in Google Scholar

Lu, F., Yu, H., Yan, C., Yao, J. (2016) Polylactic acid nanocomposite films with spherical nanocelluloses as efficient nucleation agents: effects on crystallization, mechanical and thermal properties. RSC Adv. 6:46008–46018. Search in Google Scholar

Martinez-Sanz, M., Abdelwahab, M.A., Lopez-Rubio, A., Lagaron, J.M., Chiellini, E., Williams, T.G., Wood, D.F., Orts, W.J., Imam, S.H. (2013) Incorporation of poly(glycidylmethacrylate) grafted bacterial cellulose nanowhiskers in poly(lactic acid) nanocomposites: Improved barrier and mechanical properties. Eur. Polym. J. 49:2062–2072. Search in Google Scholar

Mondal, M.I.H., Alam, A.B.M.F. (2013) Utilization of cellulosic wastes in textile and garment industries: 2. Synthesis and characterization of cellulose acetate from knitted rag. J. Polym. Environ. 21:280–285. Search in Google Scholar

Oconnor, R.T., Dupre, E.F., McCall, E.R. (1957) Infrared spectrophotometric procedure for analysis of cellulose and modified cellulose. Anal. Chem. 29:998–1005. Search in Google Scholar

Oksman, K., Aitomäki, Y., Mathew, A.P., Siqueira, G., Zhou, Q., Butylina, S., Tanpichai, S., Zhou, X., Hooshmand, S. (2016) Review of the recent developments in cellulose nanocomposite processing. Compos. Part A. Appl. Sci. Manuf. 83:2–18. Search in Google Scholar

Paul, D.R., Robeson, L.M. (2008) Polymer nanotechnology: Nanocomposites. Polymer 49:3187–3204. Search in Google Scholar

Pei, A., Berglund, L.A., Zhou, Q. (2014) Surface-modification of nanocelluloses and their applications in poly(lactic acid)/nanocellulose biocomposites. In: Abstract of Papers of the ACS, 247th National Spring Meeting of the American-Chemical-Society (ACS), Dallas, TX, 163-CELL-p. Search in Google Scholar

Peng, Y., Gardner, D.J., Han, Y. (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102. Search in Google Scholar

Petersson, L., Kvien, I., Oksman, K. (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos. Sci. Technol. 67: 2535–2544. Search in Google Scholar

Qu, P., Zhou, Y., Zhang, X., Yao, S., Zhang, L. (2012) Surface modification of cellulose nanofibrils for poly(lactic acid) composite application. J. Appl. Polym. Sci. 125:3084–3091. Search in Google Scholar

Robles, E., Urruzola, I., Labidi, J., Serrano, L. (2015) Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites. Ind. Crops Prod. 71:44–53. Search in Google Scholar

Roohani, M., Habibi, Y., Belgacem, N.M., Ebrahim, G., Karimi, A.N., Dufresne, A. (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur. Polym. J. 44:2489–2498. Search in Google Scholar

Saheb, N., Ul Qadir, N., Siddiqui, M.U., Arif, A.F.M., Akhtar, S.S., Al-Aqeeli, N. (2014) Characterization of nanoreinforcement dispersion in inorganic nanocomposites: A review. Materials 7:4148–4181. Search in Google Scholar

Song, Z., Xiao, H., Zhao, Y. (2014) Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohyd. Polym. 111:442–448. Search in Google Scholar

Sukyai, P., Sriroth, K.-R., Lee, B.-H., Hyun, J.-K. (2012) The effect of bacterial cellulose on the mechanical and thermal expansion properties of kenaf/polylactic acid composites. Appl. Mech. Mater. 117–119:1343–1351. Search in Google Scholar

Tingaut, P., Zimmermann, T., Lopez-Suevos, F. (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11:454–464. Search in Google Scholar

Trifol, J., Plackett, D., Sillard, C., Hassager, O., Daugaard, A.E., Bras, J., Szabo, P. (2016) A comparison of partially acetylated nanocellulose, nanocrystalline cellulose, and nanoclay as fillers for high-performance polylactide nanocomposites. J. Appl. Polym. Sci. 133:43257–43268. Search in Google Scholar

Wasanasuk, K., Tashiro, K. (2011) Crystal structure and disorder in Poly(l-lactic acid) δ form (α′ form) and the phase transition mechanism to the ordered α form. Polymer 52:6097–6109. Search in Google Scholar

Ž, V., Fabjan, E.S., Kasunić, M., Korošec, R.C., Hančič, A., Oven, P., Perše, L.S., Poljanšek, I. (2014) Morphological, thermal, and structural aspects of dried and redispersed nanofibrillated cellulose (NFC). Holzforschung 68:657–667. Search in Google Scholar

Žepič, V., Poljanšek, I., Oven, P., Škapin, A.S., Hančič, A. (2015) Effect of drying pretreatment on the acetylation of nanofibrillated cellulose. BioRes. 10:8148–8167. Search in Google Scholar

Zimmermann, T., Pohler, E., Geiger, T. (2004) Cellulose fibrils for polymer reinforcement. Adv. Eng. Mater. 6:754–761. Search in Google Scholar

Received: 2016-6-14
Accepted: 2016-10-19
Published Online: 2016-11-16
Published in Print: 2016-12-1

©2016 Walter de Gruyter GmbH, Berlin/Boston