Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 5, 2016

Premature failure of utility poles in Switzerland and Germany related to wood decay basidiomycetes

  • Javier Ribera EMAIL logo , Mark Schubert , Siegfried Fink , Marco Cartabia and Francis W.M.R. Schwarze
From the journal Holzforschung

Abstract

In contact with soil, copper (Cu) formulations as preservatives are expected to inhibit wood decay by fungi and other soil-borne microorganisms. However, Cu-resistant brown-rot (BR) fungi lead to premature failures of utility poles at some sites. In this study, the service lives of 111 utility poles of Norway spruce (Picea abies (L.) H. Karst) (73 from Switzerland and 38 from Germany) impregnated with Cu-based wood preservatives were investigated. Three segments of each utility pole were analyzed. The severity of decay was dependent on the preservative formulation. BR fungi and in particular Antrodia species were predominantly isolated from utility poles that were not treated with a co-biocide, e.g. boron (B). Cu-sensitivity of several isolated BR fungi was confirmed in studies on Cu-amended medium and in Cu-treated wood. Isolates of Fibroporia vaillantii and Serpula himantioides showed a higher Cu-tolerance than the highly Cu-tolerant Empa isolate Rhodonia placenta (Empa 45) or Antrodia serialis.

Acknowledgments

The authors are pleased to acknowledge the financial support by the CTI (Kommission für Technologie und Innovation Project No. 17001.1 PFLS-LS). We thank Deutsche Telekom AG, Swisscom AG, and BASF Wolman for assisting in the preparation of wood poles and for the technical support.

References

Arantes, V., Jellison J., Goodell, B. (2012) Peculiarities of brown rot fungi and the biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. App. Microbiol. Biotechnol. 94:323–338.10.1007/s00253-012-3954-ySearch in Google Scholar

Arantes, V., Goodell, B. (2014) Current understanding of brown rot fungal biodegradation mechanisms: a review. In: Deterioration and Protection of Sustainable Biomaterials. Eds. Schultz, T.P., Goodell, B., Nicholas, D.D. ACS Publication, USA. pp. 3–21.10.1021/bk-2014-1158.ch001Search in Google Scholar

AWPA. (1999) American Wood Preservers’ Association Book of Standards. American Wood Preservers’ Association, Grandbury, TX, USA.Search in Google Scholar

Baum, S., Sieber, T.N., Schwarze, F.W.M.R., Fink, S. (2003) Latent infections of Fomes fomentarius in the xylem of European beech (Fagus sylvatica). Mycol. Prog. 2:141–148.10.1007/s11557-006-0052-5Search in Google Scholar

Bolin, C.A., Smith S.T. (2011) Life cycle assessment of pentachlorophenol-treated wooden poles with comparisons to steel and concrete utility poles. Renew. Sust. Energy Rev. 15:2475–2486.10.1016/j.rser.2011.01.019Search in Google Scholar

Bollmus, S., Rangno, N., Militz, H., Gellerich, A. (2012) Analyses of premature failure of utility poles. International Research Group on Wood Protection, p. 9. IRG/WP12-40584.Search in Google Scholar

Cervantes, C., Gutierrez-Corona, F. (1994) Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol. Rev. 14:121–138.10.1111/j.1574-6976.1994.tb00083.xSearch in Google Scholar

Civardi, C., Schubert, M., Fey, A., Wick, P., Schwarze, F. (2015a) Micronized copper wood preservatives: efficacy of ion, nano and bulk copper against the brown rot fungus Rhodonia placenta. PLoS One 10:e0142578.10.1371/journal.pone.0142578Search in Google Scholar

Civardi, C., Schwarze, F., Wick, P. (2015b) Micronized copper wood preservatives: An efficiency and potential health risk assessment for copper-based nanoparticles. Environ. Pollut. 200:126–132.10.1016/j.envpol.2015.02.018Search in Google Scholar

Collet, O. (1992) Comparative tolerance of the brown rot fungus Antrodia vaillantii (DC.:Fr) Ryv. Isolates to copper. Holzforschung 46:293–298.10.1515/hfsg.1992.46.4.293Search in Google Scholar

Daniel, G. (2014) Fungal and bacterial biodegradation: white rots, brown rots, soft rots and bacteria. In: Deterioration and Protection of Sustainable Biomaterials. Eds. Schultz, T.P., Goodell, B., Nicholas, D.D. ACS Publication, USA. pp. 23–58.10.1021/bk-2014-1158.ch002Search in Google Scholar

De Groot, R.C., Woodwards, B. (1999) Using copper-tolerant fungi to biodegrade wood treated with copper-based preservatives. Int. Biodeterior. Biodegrad. 44:17–27.10.1016/S0964-8305(99)00047-5Search in Google Scholar

Duncan, C.G., Lombard, E.F. (1965) Fungi associated with principal decays in wood products in the United States. USDA Forest Serv., Forest Prod. Lab. Report No. WO-4. Madison, WI.10.5962/bhl.title.87851Search in Google Scholar

EN 113 (1996) Wood preservatives – test method for determining the protective effectiveness against wood destroying basidiomycetes: determination of toxic values. European Committee for Standardization (CEN), Brussels, Belgium.Search in Google Scholar

EN 335-1 (1992) Hazard classes of wood and wood-based products against biological attack. Classification of hazard classes. British Standard Institution (BSI), London, United Kingdom.Search in Google Scholar

EN 460 (1994) Durability of wood and wood-based products. Natural durability of solid wood. Guide to the durability requirements for wood to be used in hazard classes. British Standard Institution (BSI), London, United Kingdom.Search in Google Scholar

Eslyn, W.E. (1970) Utility pole decay. Part II: basidiomycetes associated with decay in poles. Wood Sci. Tech. 4:97–103.10.1007/BF00365296Search in Google Scholar

European Directive 98/8/EG (1998). Directive 98/8/EC of the European Parliament and of the Council of 16 February 1998 concerning the placing of biocidal products on the market. Official Journal of the European Communities. L123:1–63.Search in Google Scholar

Freeman, M., McIntyre, C. (2008) A comprehensive review of copper-based wood preservatives with a focus on new micronized or dispersed copper systems. Forest Prod. J. 58:6–27.Search in Google Scholar

Freitag, C., Morrell, J.J., Love, C.S. (2011) Long-term performance of fused borate rods for limiting internal decay in Douglas-fir utility poles. Holzforschung 65:429–434.10.1515/hf.2010.098Search in Google Scholar

Gadd, G.M. (2007) Fungi and industrial pollutants. In: Environmental and Microbial Relationships, Vol. IV. Eds. Kubicek, C.P., Druzhinina, I.S. Springer-Verlag, Berlin-Heidelberg. pp. 69–84.Search in Google Scholar

Green, F., Clausen, C.A. (2003) Copper tolerance of brown rot fungi: time course of oxalic acid production. Int. Biodeterior. Biodegrad. 51:145–149.10.1016/S0964-8305(02)00099-9Search in Google Scholar

Hach A., Schwarze F.W.M.R. (2016) Schweizerisches Holzschutzmittelverzeichnis. Bundesamt für Umwelt (BAFU). Bern, Switzerland. pp. 124–125.Search in Google Scholar

Häger, B., Johnson, G.C., Thornton, J.D., Gardner, W.D. (2001) The Condition, after 31 Years Exposure, of Pine Stakes Treated with Ammoniacal Copper-Based Preservatives. Holzforschung 55:163–170.10.1515/HF.2001.027Search in Google Scholar

Hopkins, A.J.M., Harrison, K.S., Grove, S.J., Wardlaw, T.J., Mohammed, C.L. (2005) Wood-decay fungi and saproxylic beetles associated with living Eucalyptus oblique trees: early results from studies at the Warra LTER site, Tasmania. Tas. Forest. 16:111–126.Search in Google Scholar

Huckfeldt, T., Schmidt, O. (2006) Identification key for European strand-forming house-rot fungi. Mycologist 20:42–56.10.1016/j.mycol.2006.03.012Search in Google Scholar

Hughes, A. (2004) The tools at our disposal. Final Workshop COST Action E22 “Environmental optimization of Wood Protection”, 22nd and 23rd March 2004; Lisboa, Portugal. p. 11.Search in Google Scholar

Hughes, M.N., Poole, R. K. (1989) Metals and Micro-organisms. Chapman & Hall Mehta, London.Search in Google Scholar

Humar, M., Zlindra, D., Pohleven, F. (2007) Improvement of fungicidal properties and copper fixation of copper–ethanolamine wood preservatives using octanoic acid and boron compounds. Holz Roh Werkst. 65:17–21.10.1007/s00107-006-0118-8Search in Google Scholar

Janzen, S., Nicholas, D.D. (2016) Relation of transverse compression properties and the degree of brown rot biodeterioration of Pinus glabra in the soil block test. Holzforschung 70:1067–1071.10.1515/hf-2016-0004Search in Google Scholar

Kartal, S.N., Terzi, E., Yilmaz, H., Goodell, B. (2015) Bioremediation and decay of wood treated with ACQ, micronized ACQ, nano-CuO and CCA wood preservatives. Int. Biodeterior. Biodegrad. 99:95–101.10.1016/j.ibiod.2015.01.004Search in Google Scholar

Kües, U., Mai, C., Militz, H. (2007) “Biological wood protection“. In: Wood Production, Wood Technology, and Biotechnological Impacts. Ed. Kües, U. Universitätsverlag Göttingen, Göttingen. pp. 273–288.10.17875/gup2007-262Search in Google Scholar

Leithoff, H., Stephan, I., Lenz, M.T., Peek, R.D. (1995) Growth of copper tolerant brown rot fungus Antrodia vaillantii on different substrates. International Research Group on Wood Protection, IRG/WP 95-10121.Search in Google Scholar

Little, N.S., Schultz, T.P., Nicholas, D.D. (2010) Effect of different soils and pH amendments on brown-rot decay activity in a soil block test. Holzforschung 64:667–671.10.1515/hf.2010.081Search in Google Scholar

Lombard, F.F., Chamuris, G.P. (1990) Basidiomycetes. In: Identification Manual for Fungi from Utility Poles in the Eastern United States. Eds. Wang, C.J.K., Zabel, R.A. Allen Press, Lawrence, Kansas. pp. 21–104.Search in Google Scholar

Mai, C., Militz, H. (2007) Chemical wood protection. In: Wood Production, Wood Technology, and Biotechnological Impacts. Ed. Kües, U. Universitätsverlag Göttingen, Göttingen. pp. 259–271.Search in Google Scholar

Nobles, M.K. (1965) Identification of cultures of wood inhabiting hymenomycetes. Can. J. Bot. 43:1097–1139.10.1139/b65-126Search in Google Scholar

Palfreyman, J.W., Bruce, A. (1994) “Detection and biocontrol of wood decay organisms“. In: Building Mycology. Ed. Singh, J. Chapman & Hall, UK. pp. 170–191.Search in Google Scholar

Pfeffer, A., Hoegger, P.J., Kües, U., Militz H. (2012) Fungal colonization of outside weathered modified wood. Wood Sci. Technol. 46:63–72.10.1007/s00226-010-0386-7Search in Google Scholar

Quitt, H. (2009) Holzschutzmittelverzeichnis: Verzeichnis der Holzschutzmittel mit allgemeiner bauaufsichtlicher Zulassung, Auflistung der Holzschutzmittel mit RAL-Gütezeichen, Auflistung der Bläueschutzmittel nach VdL-Richtlinie. In: Schriften des Deutschen Instituts für Bautechnik. Ed. Schmidt, E. Berlin, Germany. pp. 74–75.Search in Google Scholar

Ringman, R., Pilgård, A., Brischke, C., Richter, K. (2014) Mode of action of brown rot decay resistance in modified wood: a review. Holzforschung 68:239–246.10.1515/hf-2013-0057Search in Google Scholar

Schimdt, O., Kebernik, U. (1989) Characterization and identification of the dry rot fungus Serpula lacrymans by polyacrylamide gel electrophoresis. Holzforschung 43:195–198.10.1515/hfsg.1989.43.3.195Search in Google Scholar

Schmidt, O., Moreth, U. (1996) Biological characterization of Poria indoor brown-rot fungi. Holzforschung 50:105–110.10.1515/hfsg.1996.50.2.105Search in Google Scholar

Schmidt, O., Moreth, U. (2003) Molecular identity of species and isolates of internal pore fungi Antrodia spp. and Oligoporus placenta. Holzforschung 57:12–126.10.1515/HF.2003.019Search in Google Scholar

Schubert, M., Fink, S., Schwarze, F.W.M.R. (2008) In Vitro Screening of an antagonistic Trichoderma strain against wood decay fungi. Arboric. J. 31:227–248.10.1080/03071375.2008.9747541Search in Google Scholar

Schultz, T.P., Nicholas, D.D. (2010) A proposed accelerated field stake test for rapid assessment of wood preservative systems. Holzforschung 64:673–679.10.1515/hf.2010.071Search in Google Scholar

Schultz, T.P., Nicholas, D.D. (2012) Relative fungal efficacy results from the soil block test with a long incubation period of three commercial copper wood preservatives. Holzforschung 66:245–250.10.1515/HF.2011.139Search in Google Scholar

Schwarze, F.W.M.R. (2007) Wood decay under the microscope. Fungal Biol Rev. 21:133–170.10.1016/j.fbr.2007.09.001Search in Google Scholar

Schwarze, F.W.M.R., Jauss, F., Spenser, C., Hallam, C., Schubert, M. (2012) Evaluation an antagonistic Trichoderma strain for reducing the rate of wood decomposition by the white rot fungus Phellinus noxius. Biol. Control. 61:160–168.10.1016/j.biocontrol.2012.01.016Search in Google Scholar

Sieber, T.N. (1995) Pynrenochaeta ligni-putridi spp. nov., a new coelomycete associated with butt rot of Picea abies in Switzerland. Mycol. Res. 99:274–276.10.1016/S0953-7562(09)80897-6Search in Google Scholar

Sierra-Alvarez, R. (2007) Fungal bioleaching of metals in preservative-treated wood. Process Biochem. 42:798–804.10.1016/j.procbio.2007.01.019Search in Google Scholar

Stalpers, J.A. (1978) Identification of Wood-inhabiting Aphyllophorales in Pure Culture. Centraalbureau voor Schimmelcultures, Baarn.Search in Google Scholar

Theden, G., Kottlors, C. (1965) Verfahren zum Sichtbarmachen von Schutzmitteln im Holz. Mitteilungen der Gesellschaft für Holzforschung. Bundesanstalt für Materialprüfung, Berlin-Dahlem, Germany. pp. 36–66.Search in Google Scholar

White, T.J., Bruns, T., Lee, S. and Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a Guide to Methods and Applications. Eds. Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. Academic Press: San Diego, U.S.A. pp. 315–322.10.1016/B978-0-12-372180-8.50042-1Search in Google Scholar

Wilcox, W.W., Dietz, M. (1997) Fungi causing above ground wood decay in structures in California. Wood Fiber Sci. 29:291–298.Search in Google Scholar

Woodward, B. and De Groot, R. (1999) Tolerance of Wolfiporia cocos isolates to copper in agar media. Forest Prod. J. 49:87–94.Search in Google Scholar

Young, G.Y. (1961) Copper tolerance of some wood rotting fungi. Report no. 2223 U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI.Search in Google Scholar

Zabel, R.A., Lombard, F.F., Wang, C.J.K., Terracina F.C. (1985) Fungi associated with decay in treated southern pine utility poles in the eastern United States. Wood Fiber Sci. 17:75–91.Search in Google Scholar

Received: 2016-8-26
Accepted: 2016-9-30
Published Online: 2016-11-5
Published in Print: 2017-3-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.12.2023 from https://www.degruyter.com/document/doi/10.1515/hf-2016-0134/html
Scroll to top button