Abstract
In contact with soil, copper (Cu) formulations as preservatives are expected to inhibit wood decay by fungi and other soil-borne microorganisms. However, Cu-resistant brown-rot (BR) fungi lead to premature failures of utility poles at some sites. In this study, the service lives of 111 utility poles of Norway spruce (Picea abies (L.) H. Karst) (73 from Switzerland and 38 from Germany) impregnated with Cu-based wood preservatives were investigated. Three segments of each utility pole were analyzed. The severity of decay was dependent on the preservative formulation. BR fungi and in particular Antrodia species were predominantly isolated from utility poles that were not treated with a co-biocide, e.g. boron (B). Cu-sensitivity of several isolated BR fungi was confirmed in studies on Cu-amended medium and in Cu-treated wood. Isolates of Fibroporia vaillantii and Serpula himantioides showed a higher Cu-tolerance than the highly Cu-tolerant Empa isolate Rhodonia placenta (Empa 45) or Antrodia serialis.
Acknowledgments
The authors are pleased to acknowledge the financial support by the CTI (Kommission für Technologie und Innovation Project No. 17001.1 PFLS-LS). We thank Deutsche Telekom AG, Swisscom AG, and BASF Wolman for assisting in the preparation of wood poles and for the technical support.
References
Arantes, V., Jellison J., Goodell, B. (2012) Peculiarities of brown rot fungi and the biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. App. Microbiol. Biotechnol. 94:323–338.10.1007/s00253-012-3954-ySearch in Google Scholar
Arantes, V., Goodell, B. (2014) Current understanding of brown rot fungal biodegradation mechanisms: a review. In: Deterioration and Protection of Sustainable Biomaterials. Eds. Schultz, T.P., Goodell, B., Nicholas, D.D. ACS Publication, USA. pp. 3–21.10.1021/bk-2014-1158.ch001Search in Google Scholar
AWPA. (1999) American Wood Preservers’ Association Book of Standards. American Wood Preservers’ Association, Grandbury, TX, USA.Search in Google Scholar
Baum, S., Sieber, T.N., Schwarze, F.W.M.R., Fink, S. (2003) Latent infections of Fomes fomentarius in the xylem of European beech (Fagus sylvatica). Mycol. Prog. 2:141–148.10.1007/s11557-006-0052-5Search in Google Scholar
Bolin, C.A., Smith S.T. (2011) Life cycle assessment of pentachlorophenol-treated wooden poles with comparisons to steel and concrete utility poles. Renew. Sust. Energy Rev. 15:2475–2486.10.1016/j.rser.2011.01.019Search in Google Scholar
Bollmus, S., Rangno, N., Militz, H., Gellerich, A. (2012) Analyses of premature failure of utility poles. International Research Group on Wood Protection, p. 9. IRG/WP12-40584.Search in Google Scholar
Cervantes, C., Gutierrez-Corona, F. (1994) Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol. Rev. 14:121–138.10.1111/j.1574-6976.1994.tb00083.xSearch in Google Scholar
Civardi, C., Schubert, M., Fey, A., Wick, P., Schwarze, F. (2015a) Micronized copper wood preservatives: efficacy of ion, nano and bulk copper against the brown rot fungus Rhodonia placenta. PLoS One 10:e0142578.10.1371/journal.pone.0142578Search in Google Scholar
Civardi, C., Schwarze, F., Wick, P. (2015b) Micronized copper wood preservatives: An efficiency and potential health risk assessment for copper-based nanoparticles. Environ. Pollut. 200:126–132.10.1016/j.envpol.2015.02.018Search in Google Scholar
Collet, O. (1992) Comparative tolerance of the brown rot fungus Antrodia vaillantii (DC.:Fr) Ryv. Isolates to copper. Holzforschung 46:293–298.10.1515/hfsg.1992.46.4.293Search in Google Scholar
Daniel, G. (2014) Fungal and bacterial biodegradation: white rots, brown rots, soft rots and bacteria. In: Deterioration and Protection of Sustainable Biomaterials. Eds. Schultz, T.P., Goodell, B., Nicholas, D.D. ACS Publication, USA. pp. 23–58.10.1021/bk-2014-1158.ch002Search in Google Scholar
De Groot, R.C., Woodwards, B. (1999) Using copper-tolerant fungi to biodegrade wood treated with copper-based preservatives. Int. Biodeterior. Biodegrad. 44:17–27.10.1016/S0964-8305(99)00047-5Search in Google Scholar
Duncan, C.G., Lombard, E.F. (1965) Fungi associated with principal decays in wood products in the United States. USDA Forest Serv., Forest Prod. Lab. Report No. WO-4. Madison, WI.10.5962/bhl.title.87851Search in Google Scholar
EN 113 (1996) Wood preservatives – test method for determining the protective effectiveness against wood destroying basidiomycetes: determination of toxic values. European Committee for Standardization (CEN), Brussels, Belgium.Search in Google Scholar
EN 335-1 (1992) Hazard classes of wood and wood-based products against biological attack. Classification of hazard classes. British Standard Institution (BSI), London, United Kingdom.Search in Google Scholar
EN 460 (1994) Durability of wood and wood-based products. Natural durability of solid wood. Guide to the durability requirements for wood to be used in hazard classes. British Standard Institution (BSI), London, United Kingdom.Search in Google Scholar
Eslyn, W.E. (1970) Utility pole decay. Part II: basidiomycetes associated with decay in poles. Wood Sci. Tech. 4:97–103.10.1007/BF00365296Search in Google Scholar
European Directive 98/8/EG (1998). Directive 98/8/EC of the European Parliament and of the Council of 16 February 1998 concerning the placing of biocidal products on the market. Official Journal of the European Communities. L123:1–63.Search in Google Scholar
Freeman, M., McIntyre, C. (2008) A comprehensive review of copper-based wood preservatives with a focus on new micronized or dispersed copper systems. Forest Prod. J. 58:6–27.Search in Google Scholar
Freitag, C., Morrell, J.J., Love, C.S. (2011) Long-term performance of fused borate rods for limiting internal decay in Douglas-fir utility poles. Holzforschung 65:429–434.10.1515/hf.2010.098Search in Google Scholar
Gadd, G.M. (2007) Fungi and industrial pollutants. In: Environmental and Microbial Relationships, Vol. IV. Eds. Kubicek, C.P., Druzhinina, I.S. Springer-Verlag, Berlin-Heidelberg. pp. 69–84.Search in Google Scholar
Green, F., Clausen, C.A. (2003) Copper tolerance of brown rot fungi: time course of oxalic acid production. Int. Biodeterior. Biodegrad. 51:145–149.10.1016/S0964-8305(02)00099-9Search in Google Scholar
Hach A., Schwarze F.W.M.R. (2016) Schweizerisches Holzschutzmittelverzeichnis. Bundesamt für Umwelt (BAFU). Bern, Switzerland. pp. 124–125.Search in Google Scholar
Häger, B., Johnson, G.C., Thornton, J.D., Gardner, W.D. (2001) The Condition, after 31 Years Exposure, of Pine Stakes Treated with Ammoniacal Copper-Based Preservatives. Holzforschung 55:163–170.10.1515/HF.2001.027Search in Google Scholar
Hopkins, A.J.M., Harrison, K.S., Grove, S.J., Wardlaw, T.J., Mohammed, C.L. (2005) Wood-decay fungi and saproxylic beetles associated with living Eucalyptus oblique trees: early results from studies at the Warra LTER site, Tasmania. Tas. Forest. 16:111–126.Search in Google Scholar
Huckfeldt, T., Schmidt, O. (2006) Identification key for European strand-forming house-rot fungi. Mycologist 20:42–56.10.1016/j.mycol.2006.03.012Search in Google Scholar
Hughes, A. (2004) The tools at our disposal. Final Workshop COST Action E22 “Environmental optimization of Wood Protection”, 22nd and 23rd March 2004; Lisboa, Portugal. p. 11.Search in Google Scholar
Hughes, M.N., Poole, R. K. (1989) Metals and Micro-organisms. Chapman & Hall Mehta, London.Search in Google Scholar
Humar, M., Zlindra, D., Pohleven, F. (2007) Improvement of fungicidal properties and copper fixation of copper–ethanolamine wood preservatives using octanoic acid and boron compounds. Holz Roh Werkst. 65:17–21.10.1007/s00107-006-0118-8Search in Google Scholar
Janzen, S., Nicholas, D.D. (2016) Relation of transverse compression properties and the degree of brown rot biodeterioration of Pinus glabra in the soil block test. Holzforschung 70:1067–1071.10.1515/hf-2016-0004Search in Google Scholar
Kartal, S.N., Terzi, E., Yilmaz, H., Goodell, B. (2015) Bioremediation and decay of wood treated with ACQ, micronized ACQ, nano-CuO and CCA wood preservatives. Int. Biodeterior. Biodegrad. 99:95–101.10.1016/j.ibiod.2015.01.004Search in Google Scholar
Kües, U., Mai, C., Militz, H. (2007) “Biological wood protection“. In: Wood Production, Wood Technology, and Biotechnological Impacts. Ed. Kües, U. Universitätsverlag Göttingen, Göttingen. pp. 273–288.10.17875/gup2007-262Search in Google Scholar
Leithoff, H., Stephan, I., Lenz, M.T., Peek, R.D. (1995) Growth of copper tolerant brown rot fungus Antrodia vaillantii on different substrates. International Research Group on Wood Protection, IRG/WP 95-10121.Search in Google Scholar
Little, N.S., Schultz, T.P., Nicholas, D.D. (2010) Effect of different soils and pH amendments on brown-rot decay activity in a soil block test. Holzforschung 64:667–671.10.1515/hf.2010.081Search in Google Scholar
Lombard, F.F., Chamuris, G.P. (1990) Basidiomycetes. In: Identification Manual for Fungi from Utility Poles in the Eastern United States. Eds. Wang, C.J.K., Zabel, R.A. Allen Press, Lawrence, Kansas. pp. 21–104.Search in Google Scholar
Mai, C., Militz, H. (2007) Chemical wood protection. In: Wood Production, Wood Technology, and Biotechnological Impacts. Ed. Kües, U. Universitätsverlag Göttingen, Göttingen. pp. 259–271.Search in Google Scholar
Nobles, M.K. (1965) Identification of cultures of wood inhabiting hymenomycetes. Can. J. Bot. 43:1097–1139.10.1139/b65-126Search in Google Scholar
Palfreyman, J.W., Bruce, A. (1994) “Detection and biocontrol of wood decay organisms“. In: Building Mycology. Ed. Singh, J. Chapman & Hall, UK. pp. 170–191.Search in Google Scholar
Pfeffer, A., Hoegger, P.J., Kües, U., Militz H. (2012) Fungal colonization of outside weathered modified wood. Wood Sci. Technol. 46:63–72.10.1007/s00226-010-0386-7Search in Google Scholar
Quitt, H. (2009) Holzschutzmittelverzeichnis: Verzeichnis der Holzschutzmittel mit allgemeiner bauaufsichtlicher Zulassung, Auflistung der Holzschutzmittel mit RAL-Gütezeichen, Auflistung der Bläueschutzmittel nach VdL-Richtlinie. In: Schriften des Deutschen Instituts für Bautechnik. Ed. Schmidt, E. Berlin, Germany. pp. 74–75.Search in Google Scholar
Ringman, R., Pilgård, A., Brischke, C., Richter, K. (2014) Mode of action of brown rot decay resistance in modified wood: a review. Holzforschung 68:239–246.10.1515/hf-2013-0057Search in Google Scholar
Schimdt, O., Kebernik, U. (1989) Characterization and identification of the dry rot fungus Serpula lacrymans by polyacrylamide gel electrophoresis. Holzforschung 43:195–198.10.1515/hfsg.1989.43.3.195Search in Google Scholar
Schmidt, O., Moreth, U. (1996) Biological characterization of Poria indoor brown-rot fungi. Holzforschung 50:105–110.10.1515/hfsg.1996.50.2.105Search in Google Scholar
Schmidt, O., Moreth, U. (2003) Molecular identity of species and isolates of internal pore fungi Antrodia spp. and Oligoporus placenta. Holzforschung 57:12–126.10.1515/HF.2003.019Search in Google Scholar
Schubert, M., Fink, S., Schwarze, F.W.M.R. (2008) In Vitro Screening of an antagonistic Trichoderma strain against wood decay fungi. Arboric. J. 31:227–248.10.1080/03071375.2008.9747541Search in Google Scholar
Schultz, T.P., Nicholas, D.D. (2010) A proposed accelerated field stake test for rapid assessment of wood preservative systems. Holzforschung 64:673–679.10.1515/hf.2010.071Search in Google Scholar
Schultz, T.P., Nicholas, D.D. (2012) Relative fungal efficacy results from the soil block test with a long incubation period of three commercial copper wood preservatives. Holzforschung 66:245–250.10.1515/HF.2011.139Search in Google Scholar
Schwarze, F.W.M.R. (2007) Wood decay under the microscope. Fungal Biol Rev. 21:133–170.10.1016/j.fbr.2007.09.001Search in Google Scholar
Schwarze, F.W.M.R., Jauss, F., Spenser, C., Hallam, C., Schubert, M. (2012) Evaluation an antagonistic Trichoderma strain for reducing the rate of wood decomposition by the white rot fungus Phellinus noxius. Biol. Control. 61:160–168.10.1016/j.biocontrol.2012.01.016Search in Google Scholar
Sieber, T.N. (1995) Pynrenochaeta ligni-putridi spp. nov., a new coelomycete associated with butt rot of Picea abies in Switzerland. Mycol. Res. 99:274–276.10.1016/S0953-7562(09)80897-6Search in Google Scholar
Sierra-Alvarez, R. (2007) Fungal bioleaching of metals in preservative-treated wood. Process Biochem. 42:798–804.10.1016/j.procbio.2007.01.019Search in Google Scholar
Stalpers, J.A. (1978) Identification of Wood-inhabiting Aphyllophorales in Pure Culture. Centraalbureau voor Schimmelcultures, Baarn.Search in Google Scholar
Theden, G., Kottlors, C. (1965) Verfahren zum Sichtbarmachen von Schutzmitteln im Holz. Mitteilungen der Gesellschaft für Holzforschung. Bundesanstalt für Materialprüfung, Berlin-Dahlem, Germany. pp. 36–66.Search in Google Scholar
White, T.J., Bruns, T., Lee, S. and Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a Guide to Methods and Applications. Eds. Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. Academic Press: San Diego, U.S.A. pp. 315–322.10.1016/B978-0-12-372180-8.50042-1Search in Google Scholar
Wilcox, W.W., Dietz, M. (1997) Fungi causing above ground wood decay in structures in California. Wood Fiber Sci. 29:291–298.Search in Google Scholar
Woodward, B. and De Groot, R. (1999) Tolerance of Wolfiporia cocos isolates to copper in agar media. Forest Prod. J. 49:87–94.Search in Google Scholar
Young, G.Y. (1961) Copper tolerance of some wood rotting fungi. Report no. 2223 U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI.Search in Google Scholar
Zabel, R.A., Lombard, F.F., Wang, C.J.K., Terracina F.C. (1985) Fungi associated with decay in treated southern pine utility poles in the eastern United States. Wood Fiber Sci. 17:75–91.Search in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston