Accessible Requires Authentication Published by De Gruyter March 17, 2017

A comprehensive mathematical model of heat and moisture transfer for wood convective drying

Jingyao Zhao and Yingchun Cai
From the journal Holzforschung

Abstract

The focus of this study is the development of a specific drying model for the design and operation of drying systems for stacked lumber in drying chambers. Namely, a comprehensive three-dimensional (3D) mathematical model of heat and moisture transfer in stacked wood has been developed, where the wood was subjected to convective drying that accounts for the effect of the surrounding fluid flow. In developing the model, the characteristics of wood and fluid flow, i.e. velocity, pressure, temperature, relative humidity (RH) and moisture content (MC) are described by the conservation equations of mass, momentum and energy as well as thermodynamic relations. The model presented was solved numerically by means of the commercial software COMSOL Multiphysics. The simulation results were validated against experimental data under laboratory conditions. Air current circulation was found to be non-uniform during drying, which accounts for the different rates of temperature and MC in wood. At the initial stage of drying, this difference was relatively large but reduced gradually with the drying process. Meanwhile, the transient gathered phenomenon related to humidity around the stacked wood in the chamber was observed in response to air current circulation and evaporation rate of moisture. Finally, sources of error incurred in numerical calculations and actual detection were identified and discussed.

Acknowledgments

The project was supported by the “National Natural Science Foundation of China”, Grant Nos: 31270509 and 30972306. Also the authors thank Mr. Guo Zhiquan an engineer in COMSOL China for the supporting technology used in the study.

References

Anderson, J.D. Computational Fluid Dynamics: The Basics with Applications. McGraw-Hill, New York, 1995. Search in Google Scholar

Bekhta, P., Ozarkiv, I., Alavi, S., Hiziroglu, S. (2006) A theoretical expression for drying time of thin lumber. Biores. Technol. 97:1572–1577. Search in Google Scholar

Bird, R.B., Stewart, W.E., Lightfoot, E.N. Transport Phenomena. John Wiley Sons, New York, 2007. Search in Google Scholar

COMSOL Multiphysics: http://www.cn.comsol.com/. Search in Google Scholar

Dedic, A.D. (2000) Simplifying convective heat and mass transfer in moisture desorption of oak wood by introducing characteristic transfer coefficients. Holz. Roh- Werks. 58:96–101. Search in Google Scholar

Dedic, A.D. (2012) Determination of coefficients in the analytical solution of coupled differential equations of heat and mass transfer during convective drying of heat-treated wood. J. Porous Media 15:75–82. Search in Google Scholar

Dedic, A.D, Mujumdar, A.S., Voronjec. D.K. (2003) A three dimensional model for heat and mass transfer in vonvective wood drying. Dry Technol. 1:1–15. Search in Google Scholar

Dedic, A.D., Petrovic, A.L., Nesic, M.Z. (2004) Modeling the process of desorption of water in oak (Quercus robur L.) wood. Holzforschung 58:268–273. Search in Google Scholar

Diego, E. (2014) Guest editorial: R&D needs in wood drying technology. Dry Technol. 32:629–630. Search in Google Scholar

Kadem, S., Lachemet, A., Younsi, R. (2011) 3D-Transient modeling of heat and mass transfer during heat treatment of wood. Int. Commun Heat Mass Transfer. 38:717–722. Search in Google Scholar

Kudra, Dr. T. (2004) Energy aspects in drying. Dry Technol. 22:917–932. Search in Google Scholar

Ledig, S.F., Paarhuis, B., Riepen, M. (2007) Airflow within kilns. In: Fundamentals of Wood Drying. Ed. Perre, P. Nancy: Association pour la Recherche sur le Bois en Lorraine. Search in Google Scholar

Massord, M. Engineering Thermofluids: Thermodynamics, Fluid Mechanics, and Heat Transfer. Springer, New York, 2005. Search in Google Scholar

Meng, Z.X. Study on Multi-field coupling modeling simulation and optimization of wood drying. Ph.D. dissertation Northeast Forestry University. Harbin. 2011. (In Chinese). Search in Google Scholar

Pan, K.Y., Wang, X.Z., Liu, X.D. Modern Drying Technology. 2nd ed., Chemical Industry Press, Beijing, 2007. (In Chinese). Search in Google Scholar

Rodríguez-Ramírez, J., Ignacio-Caballero, F., Méndez-Lagunas, L.L., Sandoval, S. (2014). Air flow simulation in timber (lumber) kilns: shape and geometry. International Drying Symposium. Lyon, France, 24–27. Search in Google Scholar

Salin, J.G. (2006) Modelling of the behaviour of free water in sapwood during drying: Part I. A new percolation approach. Wood Mat. Sci. Eng. 1:4–11. Search in Google Scholar

Salin, J.G. (2007) External heat and mass transfer. In: Fundamentals of Wood Drying. Ed. Perre, P. Nancy, A.R.BO.LOR. Search in Google Scholar

Salin, J.G. (2010) Problems and solutions in wood drying modelling: history and future. Wood Mat. Sci. Eng. 5:123–134. Search in Google Scholar

Sha, T.O., Yang, J., Lv, H., Yi, S.L. (2016) Numerical simulation and optimization of the velocity field in wood drying kiln. J. Nanjing Forestry Univ. (Natural Sciences Edition). 40:129–134. Search in Google Scholar

Siau, J.F. Transport Processes in Wood, Springer. Berlin, 1984. Search in Google Scholar

Silva, W.P., Silva, L.D., Farias, V.S.O., Silva, C.M.D.P.S. (2013) Three-dimensional numerical analysis of water transfer in wood: determination of an expression for the effective mass diffusivity. Wood Sci. Technol. 47:897–912. Search in Google Scholar

Simpson, W., TenWolde, A. (1999) Physical Properties and Moisture Relations of Wood. Chapter 3. In: The Wood Handbook. Wood as an Engineering Material. Gen. Tech. Rep. FPL-GTR-113. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI. Search in Google Scholar

Steinhagen, H.P., Lee, H.W. (1988) Enthalpy method to compute radial heating and thawing of logs. Wood Fiber Sci. 20:415–421. Search in Google Scholar

Tao, W.Q. Numerical Heat Transfer. 2nd ed., Xi’an Jiao Tong University Press: Xi’an, China, 2004. (In Chinese). Search in Google Scholar

Tariku, F., Kumaran, K., Fazio, P. (2010) Transient model for coupled heat, air and moisture transfer through multilayered porous media. Int. J. Heat Mass Transfer 53:3035–3044. Search in Google Scholar

Tekasakul, P., Dejchanchaiwong, R., Tirawanichakul, Y., Tirawanichakul, S. (2015) Three-Dimension numerical modeling of heat and moisture transfer in natural rubber sheet drying process. Dry Technol. 33:1124–1137. Search in Google Scholar

Wilcox, D.C. Turbulence Modeling for CFD. 2nd ed., DCW Industries, California, 1998. Search in Google Scholar

Younsi, R., Kocaefe, D., Poncsak, S., Kocaefe, Y., Gastonguay, L. (2007) Computational modelling of heat and mass transfer during the high-temperature heat treatment of wood. Appl. Therm. Eng. 27:1424–1431. Search in Google Scholar

Younsi, R., Kocaefe, D., Poncsak, S., Kocaefe, Y., Gastonguay, L. (2008) CFD modeling and experimental validation of heat and mass transfer in wood poles subjected to high temperatures: a conjugate approach. Heat Mass Transfer. 44:1497–1509. Search in Google Scholar

Younsi, R., Kocaefe, D., Poncsak, S., Kocaefe, Y. (2010) Computational and experimental analysis of high temperature thermal treatment of wood based on thermo wood technology. Int. Commun Heat Mass Transfer. 37:21–28. Search in Google Scholar

Yu, C.M. Numerical Analysis of Heat and mass Transfer for Porous Materials. Tsinghua University Press, Beijing, 2011. (In Chinese). Search in Google Scholar

Zadin, V., Kasemägi, H., Valdna, V., Vigonski, S., Veske, M., Aabloo, A. (2015) Application of multiphysics and multiscale simulations to optimize industrial wood drying kilns. Appl. Math. Comput. 26:465–475. Search in Google Scholar

Zhang, J., Miao, P., Zhong, D., Liu, L. (2014) Mathematical modeling of drying of masson pine lumber and its asymmetrical moisture content profile. Holzforschung. 68:313–321. Search in Google Scholar

Zhao, J.Y., Fu, Z.Y., Jia, X.R., Cai, Y.C. (2015) Inverse determination of thermal conductivity in lumber based on genetic algorithms. Holzforschung. 70:235–241. Search in Google Scholar

Zhao, J.Y., Fu, Z.Y., Jia, X.R., Cai, Y.C. (2016) Modeling conventional drying of wood: Inclusion of a moving evaporation interface. Dry Technol. 34:530–538. Search in Google Scholar

Zheng, S.J., Song, K.Y., Zhao, J.Y., Dong, C.L. (2016) Inverse estimation of effective moisture diffusivity in lumber during drying using genetic algorithms. BioRes. 11:8226–8238. Search in Google Scholar

Zhou, J.H., Hu, C.S., Ma, X.Y., Guo, X.W. (2014) Finite element modeling and experimental validation of radio frequency heating (rfh) of curved laminated wood-based panels. Holzforschung. 68:699–705. Search in Google Scholar

Zdanski, P.S.B., Possamai, D.G., Vaz Jr., M. (2015) A numerical assessment of the air flow behaviour in a conventional compact dry kiln. J. Appl. Fluid Mech. 8:367–376. Search in Google Scholar

Received: 2016-9-12
Accepted: 2017-1-7
Published Online: 2017-3-17
Published in Print: 2017-5-1

©2017 Walter de Gruyter GmbH, Berlin/Boston