Abstract
The modification of heat-treated wood (HTW) wettability by cold atmospheric-pressure nitrogen plasma jet (APPJ) for several treatment durations has been investigated. The effects of the modification were assessed by measurement of the advancing contact angle (ACA) of water along with determination of surface free energy. Additionally, the morphology and chemical changes of the HTW surface were characterized by scanning electron microscope (SEM) and FTIR spectroscopy. As expected, the measurements demonstrated that the ACA decreased proportionally with treatment time of APPJ. The optimal treatment time was 20 s. Clear etching traces are visible on the SEM images of HTW surfaces. The roughness of HTW increased after plasma treatment. FTIR spectra demonstrate that OH, C=O, and COOH groups are formed on the HTW surfaces. All these modifications are beneficial for the HTW wettability, which leads to better bonding strength of HTW.
Acknowledgements
This work is financially supported by the National Science and Technology Pillar Program during the 12th 5-year Plan Period (2015BAD14B0501).
References
Acda, M.N., Devera, E.E., Cabangon, R.J., Ramos, H.J. (2012) Effects of plasma modification on adhesion properties of wood. Int. J. Adhes. Adhes. 32:70–75.10.1016/j.ijadhadh.2011.10.003Search in Google Scholar
Altgen, D., Avramidis, G., Viöl, W., Mai, C. (2016) The effect of air plasma treatment at atmospheric pressure on thermally modified wood surfaces. Wood. Sci. Technol. 50:1–15.10.1007/s00226-016-0856-7Search in Google Scholar
Boonstra, M.J., Rijsdijk, J.F., Sander, C., Kegel, E., Tjeerdsma, B., Militz, H., Van Acker, J., Stevens, M. (2006) Microstrcuture and physical aspects of heat treated wood. Part 1. Softwood. Maderas-Cienc. Tecnol. 8:193–208.10.4067/S0718-221X2006000300007Search in Google Scholar
Borcia, G., Anderson, C.A., Brown, N. (2006) Surface treatment of natural and synthetic textiles using a dielectric barrier discharge. Sur. Coat. Technol. 201:3074–3081.10.1016/j.surfcoat.2006.06.021Search in Google Scholar
Bousta, C., Schambourg, F., Maguin, J., Chevet, B., Podgorski, L. (2002) Surface modification of wood by plasma polymerisation. Pigm. Resin Technol. 31:33–40.10.1108/03699420210412575Search in Google Scholar
Brischke, C., Welzbacher, C.R., Brandt, K., Rapp, A.O. (2007) Quality control of thermally modified timber: Interrelationship between heat treatment intensities and CIE L*a*b* color data on homogenized wood samples. Holzforschung 61:19–22.10.1515/HF.2007.004Search in Google Scholar
Busnel, F., Blanchard, V., Prégent, J., Stafford, L., Riedl, B., Blanchet, P., Sarkissian, A. (2010) Modification of sugar maple (Acer saccharum) and black spruce (Picea mariana) wood surfaces in a dielectric barrier discharge (DBD) at atmospheric pressure. J. Adhes. Sci. Technol. 24:1401–1413.10.1163/016942410X501007Search in Google Scholar
Chen, M., Zhang, R., Tang, L., Zhou, X., Li, Y., Yang, X. (2015) Development of an industrial applicable dielectric barrier discharge (DBD) plasma treatment for improving bondability of poplar veneer. Holzforschung 70:683–690.10.1515/hf-2015-0122Search in Google Scholar
Collett, B.M. (1972) A review of surface and interfacial adhesion in wood science and related fields. Wood. Sci. Technol. 6: 1–42.10.1007/BF00351806Search in Google Scholar
Denes, A.R., Young, R.A. (1999) Reduction of weathering degradation of wood through plasma-polymer coating. Holzforschung 53:632–640.10.1515/HF.1999.104Search in Google Scholar
Esteves, B., Domingos, I., Pereira, H. (2007) Improvement of technological quality of eucalypt wood by heat treatment in air at 170–200°C. For. Prod. J. 57:47–52.Search in Google Scholar
Esteves, B., Velez, M.A., Domingos, I., Pereira, H. (2008) Heat-induced colour changes of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci. Technol. 42:369–384.10.1007/s00226-007-0157-2Search in Google Scholar
Gérardin, P., Petrič, M., Pétrissans, M., Lambert, J., Ehrhrardt, J.J. (2007) Evolution of wood surface free energy after heat treatment. Polym. Degrad. Stab. 92:653–657.10.1016/j.polymdegradstab.2007.01.016Search in Google Scholar
Gindl, M., Sinn, G., Gindl, W., Reiterer, A., Tschegg, S. (2001) A comparison of different methods to calculate the surface free energy of wood using contact angle measurements. Colloid Surf. A 181:279–287.10.1016/S0927-7757(00)00795-0Search in Google Scholar
Hardy, J.M., Vlad, M., Vandsburger, L., Stafford, L., Riedl, B. (2015) Effect of extractives in plasma modification of wood surfaces. Surf. Innov. 3:196–205.10.1680/jsuin.15.00009Search in Google Scholar
Huang, H.C., Ye, D.Q., Huang, B.C. (2007) Nitrogen plasma modification of viscose-based activated carbon fibers. Surf. Coat. Technol. 201:9533–9540.10.1016/j.surfcoat.2007.04.029Search in Google Scholar
Huang, X., Kocaefe, D., Kocaefe, Y., Boluk, Y., Krause, C. (2013) Structural analysis of heat-treated birch (Betula papyrifera) surface during artificial weathering. Appl. Surf. Sci. 264:117–127.10.1016/j.apsusc.2012.09.137Search in Google Scholar
Jamali, A., Evans, P.D. (2011) Etching of wood surfaces by glow discharge plasma. Wood Sci. Technol. 45:169–182.10.1007/s00226-010-0317-7Search in Google Scholar
Klarhöfer, L., Viöl, W., Mausfriedrichs, W. (2010) Electron spectroscopy on plasma treated lignin and cellulose. Holzforschung 64:331–336.10.1515/hf.2010.048Search in Google Scholar
Kocaefe, D., Poncsak, S., Boluk, Y. (2008) Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. Bioresources 3:517–537.Search in Google Scholar
Kogelschatz, U. (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem. Plasma P. 23:1–46.10.1023/A:1022470901385Search in Google Scholar
Konnerth, J., Weigl, M., Gindl-Altmutter, W., Avramidis, G., Wolkenhauer, A., Viöl, W., Gilge, M., Obersriebnig, M. (2014) Effect of plasma treatment on cell-wall adhesion of urea-formaldehyde resin revealed by nanoindentation. Holzforschung 68:707–712.10.1515/hf-2013-0130Search in Google Scholar
Kostov, K.G., Nishime, T.M.C., Castro, A.H.R., Toth, A., Hein, L.R.O. (2014) Surface modification of polymeric materials by cold atmospheric plasma jet. Appl. Surf. Sci. 314:367–375.10.1016/j.apsusc.2014.07.009Search in Google Scholar
Kotilainen, R.A., Toivanen, T.-J., Alén, R.J. (2000) FTIR monitoring of chemical changes in softwood during heating. J. Wood Chem. Technol. 20:307–320.10.1080/02773810009349638Search in Google Scholar
Král, P., Ráhel’, J., Stupavská, M., Šrajer, J., Klímek, P., Mishra, P.K., Wimmer, R. (2015) XPS depth profile of plasma-activated surface of beech wood (Fagus sylvatica) and its impact on polyvinyl acetate tensile shear bond strength. Wood. Sci. Technol. 49:319–330.10.1007/s00226-014-0691-7Search in Google Scholar
Lekobou, W.P., Englund, K.R., Laborie, M.-P., Pedrow, P.D. (2016) Influence of atmospheric pressure plasma treatments on the surface properties of ligno-cellulosic substrates. Holzforschung 70:55–61.10.1515/hf-2014-0211Search in Google Scholar
Liu, W., Chen, T., Xie, T., Lai, F., Qiu, R. (2015) Oxygen plasma treatment of bamboo fibers (BF) and its effects on the static and dynamic mechanical properties of BF-unsaturated polyester composites. Holzforschung 69:449–455.10.1515/hf-2014-0097Search in Google Scholar
Liu, Y., Tao, Y., Lv, X., Zhang, Y., Di, M. (2010) Study on the surface properties of wood/polyethylene composites treated under plasma. Appl. Surf. Sci. 257:1112–1118.10.1016/j.apsusc.2010.08.032Search in Google Scholar
Liu, Y.C., Lu, D.N. (2006) Surface energy and wettability of plasma-treated polyacrylonitrile fibers. Plasma Chem. and Plasma P. 26:119–126.10.1007/s11090-006-9005-7Search in Google Scholar
Liu, Y.C., Xiong, Y., Lu, D.N. (2006) Surface characteristics and antistatic mechanism of plasma-treated acrylic fibers. Appl. Surf. Sci. 252:2960–2966.10.1016/j.apsusc.2005.05.002Search in Google Scholar
Lu, X., Laroussi, M., Puech, V. (2012) On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci. Technol. 21:1–17.10.1088/0963-0252/21/3/034005Search in Google Scholar
Lux, C., Szalay, Z., Beikircher, W., Kováčik, D., Pulker, H.K. (2013) Investigation of the plasma effects on wood after activation by diffuse coplanar surface barrier discharge. Euro. J Wood Wood Prod. 71:539–549.10.1007/s00107-013-0706-3Search in Google Scholar
Neumann, A.W., Good, R.J., Hope, C.J., Sejpal, M. (1974) An equation-of-state approach to determine surface tensions of low-energy solids from contact angles. J. Colloid Interface Sci. 49:291–304.10.1016/0021-9797(74)90365-8Search in Google Scholar
Nie, Q.Y., Yang, A., Wang, Z.B., Li, H.P. (2012) Characteristics of atmospheric room-temperature argon plasma streams produced using a dielectric barrier discharge generator with a cylindrical screwlike inner electrode. IEEE Trans. Plasma Sci. 40:2172–2178.10.1109/TPS.2012.2208125Search in Google Scholar
Nuopponen, M., Wikberg, H., Vuorinen, T., Maunu, S.L., Jämsä, S., Viitaniemi, P. (2004) Heat-treated softwood exposed to weathering. J. Appl. Polym. Sci. 91:2128–2134.10.1002/app.13351Search in Google Scholar
Özgenç, Ö., Durmaz, S., Boyaci, I.H., Eksi-Kocak, H. (2016) Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry. Spectrochim. Acta A 171:395–400.10.1016/j.saa.2016.08.026Search in Google Scholar
Petrič, M., Knehtl, B., Krause, A., Militz, H., Pavlic, M., Petrissans, M., Rapp, A., Tomazic, M., Welzbacher, C., Gerardin, P. (2007) Wettability of waterborne coatings on chemically and thermally modified pine wood. J. Coat. Technol. Res. 4:203–206.10.1007/s11998-007-9023-2Search in Google Scholar
Pétrissans, M., Gérardin, P., Bakali, I.E., Serraj, M. (2005) Wettability of heat-treated wood. Holzforschung 57:301–307.10.1515/HF.2003.045Search in Google Scholar
Podgorski, L., Chevet, B., Onic, L., Merlin, A. (2000) Modification of wood wettability by plasma and corona treatments. Int. J. Adhes. Adhes. 20:103–111.10.1016/S0143-7496(99)00043-3Search in Google Scholar
Rehn, P., Viöl, W. (2003) Dielectric barrier discharge treatments at atmospheric pressure for wood surface modification. Eur. J. Wood Wood Prod. 61:145–150.10.1007/s00107-003-0369-6Search in Google Scholar
Sakata, I., Morita, M., Tsuruta, N., Morita, K. (2010) Activation of wood surface by corona treatment to improve adhesive bonding. J. Appl. Polym. Sci. 49:1251–1258.10.1002/app.1993.070490714Search in Google Scholar
Sarani, A., Nikiforov, A.Y., Leys, C. (2010) Atmospheric pressure plasma jet in Ar and Ar/H2O mixtures: optical emission spectroscopy and temperature measurements. Phys. Plasmas 17:827–85.10.1063/1.3439685Search in Google Scholar
Schutze, A., Jeong, J.Y., Babayan, S.E., Park, J., Selwyn, G.S., Hicks, R.F. (1998) The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans. Plasma Sci. 26:1685–1694.10.1109/27.747887Search in Google Scholar
Tang, L., Zhang, R., Wang, X., Yang, X., Zhou, X. (2015) Surface modification of poplar veneer by means of radio frequency oxygen plasma (RF-OP) to improve interfacial adhesion with urea-formaldehyde resin. Holzforschung 69:193–198.10.1515/hf-2014-0018Search in Google Scholar
Tendero, C., Tixier, C., Tristant, P., Desmaison, J., Leprince, P. (2006) Atmospheric pressure plasmas: a review. Spectrochim. Acta B 61:2–30.10.1016/j.sab.2005.10.003Search in Google Scholar
Tjeerdsma, B.F., Militz, H. (2005) Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Eur. J. Wood Wood Prod. 63:102–111.10.1007/s00107-004-0532-8Search in Google Scholar
Wagner, H.E., Brandenburg, R., Kozlov, K.V., Sonnenfeld, A., Michel, P., Behnke, J.F. (2003) The barrier discharge: basic properties and applications to surface treatment. Vacuum 71:417–436.10.1016/S0042-207X(02)00765-0Search in Google Scholar
Walsh, J.L., Shi, J.J., Kong, M.G. (2006) Contrasting characteristics of pulsed and sinusoidal cold atmospheric plasma jets. Appl. Phys. Lett. 88:171501–171501-3.10.1063/1.2198100Search in Google Scholar
Wascher, R., Avramidis, G., Vetter, U., Damm, R., Peters, F., Militz, H., Viöl, W. (2014) Plasma induced effects within the bulk material of wood veneers. Surf. Coat. Technol. 259:62–67.10.1016/j.surfcoat.2014.07.005Search in Google Scholar
Wei, G.D., Ren, C.S., Qian, M.Y., Nie, Q.Y. (2011) Optical and electrical diagnostics of cold Ar atmospheric pressure plasma jet generated with a simple DBD configuration. IEEE Trans. Plasma Sci. 39:1842–1848.10.1109/TPS.2011.2159810Search in Google Scholar
Wolkenhauer, A., Avramidis, G., Militz, H., Viöl, W. (2008) Plasma treatment of heat treated beech wood – investigation on surface free energy. Holzforschung 62:472–474.10.1515/HF.2008.074Search in Google Scholar
Wu, W., Nancollas, G.H. (1999) Determination of interfacial tension from crystallization and dissolution data: a comparison with other methods. Adv. Colloid Interface Sci. 79:229–279.10.1016/S0001-8686(98)00072-4Search in Google Scholar
Xian, Y.B., Lu, X.P., Wu, S.Q., Chu, P.K., Pan, Y. (2012) Are all atmospheric pressure cold plasma jets electrically driven? Appl. Phys. Lett. 100:391.10.1063/1.3696889Search in Google Scholar
Xiao, H., He, B., Li, J. (2015) Surface modification of natural fibers by plasma for improving strength properties of paper sheets. Holzforschung 69:1001–100810.1515/hf-2014-0249Search in Google Scholar
Zhang, J.L., Sun, H., Wang, D.Z., Wang, X.G. (2006) A novel cold plasma jet generated by atmospheric dielectric barrier capillary discharge. Thin Solid Films 506:404–408.10.1016/j.tsf.2005.08.088Search in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston