Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 2, 2017

Influence of epoxidation conditions on the rheological properties of gel-like dispersions of epoxidized kraft lignin in castor oil

  • Esperanza Cortés-Triviño , Concepción Valencia and José M. Franco EMAIL logo
From the journal Holzforschung


The modification of castor oil (CO) with lignin was the focus of this research to create a lubricating medium with improved gel-like properties. Namely, an alkali lignin (L) was epoxidized with epichlorohydrin (EP) and the resulting LEPs were dispersed in CO. The parameters of LEP synthesis were varied and the epoxidation index (EPI) of the LEPs was determined. The LEPs were also submitted to thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. Rheological responses of the LEP/CO dispersions were investigated through small-amplitude oscillatory shear (SAOS) tests. Linear viscoelasticity functions are quantitatively affected by the epoxidation parameters, such as temperature, reaction time and L/EP and L/NaOH ratios. In general, lignins with higher EPI show higher values of the SAOS functions, which are indicative of better gel-strength due to a higher cross-linking density between the LEPs and CO. A power-law equation describes well the evolution of the complex modulus, G*, with frequency of gel-like dispersions, where the power-law parameters were found to increase almost linearly with the EPI. The thermo-rheological characterization provides a softening temperature beyond 50°C.

Corresponding author: Prof. José M. Franco, Departamento de Ingeniería Química, Universidad de Huelva, Campus El Carmen, Campus de Excelencia Internacional Agroalimentario, ceiA3, 21071 Huelva, Spain, Phone: +34959219995, Fax: +34959219983


This work is part of two research projects (CTQ2014-56038-C3-1R and TEP-1499) sponsored by MINECO-FEDER and Junta de Andalucía programmes, respectively. One of the authors (E. Cortés-Triviño) has received a PhD Research Grant from the “Junta de Andalucía”. The authors gratefully acknowledge its financial support.


Almdal, K., Dyre, J., Hvidt, S., Kramer, O. (1993) Towards a phenomenological definition of the term ‘gel’. Polym. Gels Netw. 1:5–17.10.1016/0966-7822(93)90020-ISearch in Google Scholar

Alvarez-Mitre, F., Toro-Vázquez, J.F., Moscosa-Santillán, M. (2013) Shear rate and cooling modeling for the study of candelilla wax organogels’ rheological properties. J. Food Eng. 119:611–618.10.1016/j.jfoodeng.2013.06.009Search in Google Scholar

Asada, C., Basnet, S., Otsuka, M., Sasaki, C., Nakamura, Y. (2015) Epoxy resin synthesis using low molecular weight lignin separated from various lignocellulosic materials. Int. J. Biol. Macromol. 74:413–9.10.1016/j.ijbiomac.2014.12.039Search in Google Scholar PubMed

Bartz, W.J. (1998) Lubricants and the environment. Tribol. Int. 31:35–47.10.1016/S0301-679X(98)00006-1Search in Google Scholar

Björkman, A. (2001) Lignin sulfonation-a different approach. Cell. Chem. Technol. 35:113–133.Search in Google Scholar

Boyde, S. (2002) Green lubricants. Environmental benefits and impacts of lubrication. Green Chem. 4:293–307.10.1039/b202272aSearch in Google Scholar

Carvajal, J.C., Gómez, Á., Cardona, C.A. (2016) Comparison of lignin extraction processes: economic and environmental assessment. Bioresour. Technol. 214:468–476.10.1016/j.biortech.2016.04.103Search in Google Scholar PubMed

El Mansouri, N., Yuan, Q., Huang, F. (2011) Synthesis and characterization of kraft lignin-based epoxy resins. BioResources 6:2647–2662.10.15376/biores.6.3.2492-2503Search in Google Scholar

Gabriele, D., de Cindio, B., D’Antona, P. (2001) A weak gel model for foods. Rheol Acta. 40:120–127.10.1007/s003970000139Search in Google Scholar

Gallego, R., Arteaga, J.F., Valencia, C., Franco, J.M. (2013a) Chemical modification of methyl cellulose with HMDI to modulate the thickening properties in castor oil. Cellulose 20:495–507.10.1007/s10570-012-9803-4Search in Google Scholar

Gallego, R., Arteaga, J.F., Valencia, C., Franco, J.M. (2013b) Rheology and thermal degradation of isocyanate-functionalized methyl cellulose-based oleogels. Carbohydr. Polym. 98:152–160.10.1016/j.carbpol.2013.04.104Search in Google Scholar PubMed

Gallego, R., Arteaga, J.F., Valencia, C., Díaz, M.J., Franco, J.M. (2015) Gel-like dispersions of HMDI-cross-linked lignocellulosic materials in castor oil: toward completely renewable lubricating grease formulations. ACS Sustain. Chem. Eng. 3:2130–2141.10.1021/acssuschemeng.5b00389Search in Google Scholar

Gan, L.H., Zhou, M.S., Qiu, X.Q. (2012) Preparation of water-soluble carboxymethylated lignin from wheat straw alkali lignin. Adv. Mat. Res. 550–553:1293–1298.10.4028/ in Google Scholar

Gîlcă, I., Popa, V.I. (2013) Study on biocidal properties of some nanoparticles based on epoxy lignin. Cell. Chem. Technol. 47:3–4.Search in Google Scholar

Hong, N., Yu, W., Xue, Y., Zeng, W., Huang, J., Xie, W., Qiu, X., Li, Y. (2016) A novel and highly efficient polymerization of sulfomethylated alkaline lignins via alkyl chain cross-linking method. Holzforschung 70:297–304.10.1515/hf-2015-0043Search in Google Scholar

Laredo, T., Barbut, S., Marangoni, A.G. (2011) Molecular interactions of polymer oleogelation. Soft Matter 7:2734–2743.10.1039/c0sm00885kSearch in Google Scholar

Laurichesse, S., Avérous, L. (2014) Chemical modification of lignins: Towards biobased polymers. Prog. Polym. Sci. 39:1266–1290.10.1016/j.progpolymsci.2013.11.004Search in Google Scholar

Lora, J.H., Glasser, W.G. (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J. Polym. Environ. 10:39–48.10.1023/A:1021070006895Search in Google Scholar

Lu, L., Liu, X., Tong, Z. (2006) Critical exponents for sol-gel transition in aqueous alginate solutions induced by cupric cations. Carbohydr. Polym. 65:544–551.10.1016/j.carbpol.2006.02.010Search in Google Scholar

Lupi, F.R., Gentile, L., Gabriele, D., Mazzulla, S., Baldino, N., de Cindio, B. (2015) Olive oil and hyperthermal water bigels for cosmetic uses. J. Colloid Interface Sci. 459:70–78.10.1016/j.jcis.2015.08.013Search in Google Scholar PubMed

Malutan, T., Nicu, R., Popa, V.I. (2008) Contribution to the study of hydroxymetylation reaction of alkali lignin. BioResources 3:13–20.Search in Google Scholar

Marangoni, A.G. (2012) Organogels: an alternative edible oil-structuring method. J. Am. Oil Chem. Soc. 89:749–780.10.1007/s11746-012-2049-3Search in Google Scholar

Myrvold, B.O. (2015) Free radical gelling reactions of lignosulfonates. Holzforschung 69:1089–1096.10.1515/hf-2014-0195Search in Google Scholar

Núñez, N., Martín-Alfonso, J.E., Valencia, C., Sánchez, M.C., Franco, J.M. (2011) Rheology of new green lubricating grease formulations containing cellulose pulp and its methylated derivative as thickener agents. Ind. Crops. Prod. 37:500–507.10.1016/j.indcrop.2011.07.027Search in Google Scholar

Núñez, N., Martín-Alfonso, J.E., Eugenio, M.E., Valencia, C., Díaz, M.J., Franco, J.M. (2012) Influence of Eucalyptus globulus kraft pulping severity on the rheological properties of gel-like cellulose pulp dispersions in castor oil. Ind. Eng. Chem. Res. 51:9777–9782.10.1021/ie301014vSearch in Google Scholar

Octave, S., Thomas, D. (2009) Biorefinery: toward an industrial metabolism. Biochimie 91:659–664.10.1016/j.biochi.2009.03.015Search in Google Scholar PubMed

Pan, H., Sun, G., Zhao, T. (2013) Synthesis and characterization of aminated lignin. Int. J. Biol. Macromol. 59:221–226.10.1016/j.ijbiomac.2013.04.049Search in Google Scholar PubMed

Passauer, L., Fischer, K., Liebner, F. (2011a) Preparation and physical characterization of strongly swellable oligo (oxyethylene) lignin hydrogels. Holzforschung 65:309–317.10.1515/hf.2011.044Search in Google Scholar

Passauer, L., Fischer, K., Liebner, F. (2011b) Activation of pine kraft lignin by Fenton-type oxidation for cross-linking with oligo(oxyethylene) diglycidyl ether. Holzforschung 65:319–326.10.1515/hf.2011.045Search in Google Scholar

Patel, A.R., Schatteman, D., De Vos, W.H., Dewettinck, K. (2013) Shellac as a natural material to structure a liquid oil-based thermo reversible soft matter system. RSC Adv. 3:5324–5327.10.1039/c3ra40934aSearch in Google Scholar

Pelaez-Samaniego, M., Yadama, V., Garcia-Perez, M., Lowell, E., Zhu, R., Englund, K. (2016) Interrelationship between lignin-rich dichloromethane extracts of hot water-treated wood fibers and high-density polyethylene (HDPE) in wood plastic composite (WPC) production. Holzforschung 70:31–38.10.1515/hf-2014-0309Search in Google Scholar

Qiu, W., Zhang, F., Endo, T., Hirotsu, T. (2005) Isocyanate as a compatibilizing agent on the properties of highly crystalline cellulose/polypropylene composites. J. Mater. Sci. 40:3607–3614.10.1007/s10853-005-0790-9Search in Google Scholar

Quinchia, L.A., Delgado, M.A., Valencia, C., Franco, J.M., Gallegos, C. (2010) Viscosity modification of different vegetable oils with EVA copolymer for lubricant applications. Ind. Crops. Prod. 32:607–612.10.1016/j.indcrop.2010.07.011Search in Google Scholar

Sánchez, R., Franco, J.M., Delgado, M.A., Valencia, C., Gallegos, C. (2008) Effect of thermo-mechanical processing on the rheology of oleogels potentially applicable as biodegradable lubricating greases. Chem. Eng. Res. Des. 86:1073–1082.10.1016/j.cherd.2008.05.002Search in Google Scholar

Satapathy, D., Biswas, D., Behera, B., Sagiri, S.S., Pal, K., Pramanik, K. (2013) Sunflower-oil-based lecithin organogels as matrices for controlled drug delivery. J. Appl. Polym. Sci. 129:585–594.10.1002/app.38498Search in Google Scholar

Thakur, V.K., Thakur, M.K. (2015) Recent advances in green hydrogels from lignin: A review. Int. J. Biol. Macromol. 72:834–847.10.1016/j.ijbiomac.2014.09.044Search in Google Scholar PubMed

Wilson, B. (1998) Lubricants and functional fluids from renewable sources. Ind. Lubr. Tribol. 50:6–15.10.1108/00368799810781274Search in Google Scholar

Yang, L., Wang, X., Cui, Y., Tian, Y., Chen, H., Wang, Z. (2014) Modification of renewable resources-lignin-by three chemical methods and its applications to polyurethane foams. Polym. Adv. Technol. 25:1089–1098.10.1002/pat.3356Search in Google Scholar

Zetzl, A.K., Gravelle, A.J., Kurylowicz, M., Dutcher, J., Barbut, S., Marangoni, A.G. (2014) Microstructure of ethylcellulose oleogels and its relationship to mechanical properties. Food Struct. 2:27–40.10.1016/j.foostr.2014.07.002Search in Google Scholar

Zhang, M. (2007) Polymeric materials from natural resources – emerging as the times require. Express Polym. Lett. 1:406.10.3144/expresspolymlett.2007.57Search in Google Scholar

Received: 2017-1-20
Accepted: 2017-4-25
Published Online: 2017-6-2
Published in Print: 2017-9-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.12.2023 from
Scroll to top button